
Proposal for a Flexible Benchmark for Agent Based
Models

Elizabeth Koning
Department of Computer Science

University of Illinois, Urbana Champaign
Urbana, IL, USA

ekoning2@illinois.edu

William Gropp
Department of Computer Science

University of Illinois, Urbana Champaign
Urbana, IL, USA

gropp@illinois.edu

Abstract—As hardware capabilities and scientific understand-
ing of social and biological systems improves, researchers are
able to model complex system with increasing detail. This change
increases the demand on Agent Based Modeling (ABM) software,
making the performance of the software more critical. For
researchers to choose the best system to implement their models,
they must understand not only the capabilities of the platforms,
which is available in the documentation, but also the relative
performance to other software options. Currently, there is a
dearth of information on the performance of ABM platforms
and no standardized way to compare the performance of different
platforms.

To address this gap, the proposed NothingModel benchmark
is a flexible benchmark to reflect a wide variety of ABMs and
allow the developers of models and ABM platforms to compare
platforms under a range of conditions. Set up as a series of
building blocks, it allows the users to vary the scale, memory
use, communication, computation, and heterogeneity of a sample
model, implemented with multiple tools. Along with the written
description of the model, we include a reference implementation
in NetLogo to demonstrate the specifics and provide comparison
to other tools.

Index Terms—Benchmarking, Agent Based Models, ABM,
Multi-agent systems, MAS, Performance

I. INTRODUCTION

As hardware capabilities and scientific understanding of

social and biological systems improves, researchers are able

to model complex system with increasing detail. Agent Based

Models (ABMs) are a popular way of representing these

complex systems, representing the actors, whether human,

plant, or animal, as agents interacting and moving around an

environment. As more complex systems are represented using

ABMs, the performance of the software becomes more critical.

There are many platforms to support the development of

ABMs, including NetLogo [8], Repast [5], and Repast HPC

[3].

For researchers to choose the best system to implement

their models, they must understand not only the capabilities

of the platforms, which is available in the documentation,

but also the relative performance to other software options.

Currently, there is a dearth of information on the performance

of ABM platforms and no standardized way to compare the

performance of different platforms.

A flexible benchmark for ABMs will help users of modeling

software choose the best tool for their task. While one piece

of software may be optimized for a large number of agents,

another may have an advantage if the model has a large variety

of agent behavior.

The NothingModel, proposed here, begins with a model of

nothing – the agents do not move, communicate, or perform

any actions. From this baseline, the model changes into a more

realistic and complex system, varying in five areas: scale, com-

putation, memory, communication, and heterogeneity. This list

comes from the lists of factors impacting performance in [1,

4].

This flexible benchmark is designed to help communicate

between ABM software developers and modelers. For the

developers of platforms supporting ABMs, it provides a way

to demonstrate their software’s strengths, whether that be in

models focused on models balanced across the five factors, or

models with heavy communication demands. As for modelers,

it provides a way to create a test model with a similar structure

as their own model, and run it with a variety of software

platforms.

In this paper, we provide a description of the benchmark, so

that it may be implemented with ABM software packages. We

include an implementation in NetLogo as a reference: https:

//github.com/kodingkoning/NothingModel.

II. BACKGROUND

A variety of benchmarks have been proposed for ABMs,

including in [1, 2, 4, 6, 7]. Each of these benchmarks aims for

measuring different elements of a model, and so has different

types of agents and different parameters. Table I shows the

factors included in each benchmark discussed in this section.

The list of features has been combined from [1, 4].

A. StupidModel

StupidModel, proposed in [6] and the earliest of these

benchmarks, simplifies a model to a very simple ABM and

then adds complexity to make a total of 16 versions. The

most basic version uses a collection of “bug” agents that

move in random directions at every timestep. Each of the next

15 versions increase in complexity. For example, the second

version adds an action where the agent grows by a constant

amount. Most (10 out of the 15) versions change the actions

or initialization of the agents from the first version, and the

835

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00149

TABLE I
FEATURES INCLUDED IN BENCHMARKS

Feature Benchmark
Particle Benchmark[1] Circles Benchmark[2] Person Benchmark[4] StupidModel [6] Person Benchmark [7]

Computation No No Yes Variation in computa-
tion of summary statis-
tics

Compute intensity in-
cluded but not varied

Scale Yes for population size,
No for environment
size.

Yes Yes Yes for population size,
No for environment
size.

Yes for population size,
No for environment
size.

Memory No No No No No
Communication No Yes for neighborhood

size, No for message
size, No for message
frequency

Yes for neighborhood
size, Yes for message
size, No for message
frequency

No No

Heterogeneity Multiple types of
agents, but same set of
agent types for all runs

No No Second type of agent
only in version 16, but
some new actions for
original agent in other
versions

No

other 5 focus on displaying information to the user, such as

graphing the number of agents.

B. Person Benchmark

In [7], the authors present a model of a “Person” agent

with actions walk, interact, and compute. The size of the

environment is always a 2000 × 2000 grid. They also use a

fixed interaction radius of 3, to determine if the randomly

moving agents will interact with one another by exchanging

small messages. For a compute workload, they use a Discrete

Fourier Transformation (DFT).

In [4], the authors base their benchmarking approach on [7].

They address the limitations of [7]’s assessment, as it is fixed

in amount of communication, amount of computation, and the

workload distribution. To provide a more general benchmark,

they parameterize the size of the compute task, the maximum

interaction radius, and the size of the messages that are sent.

These changes expose more performance factors, but it still

only includes a single agent type. Without variation in the

actions taken by the agents, the benchmark does not represent

many models.

C. Circles Benchmark

The benchmark presented in [2] focuses on the relationship

between neighboring agents. A fixed radius near neighbors

(FRNNs) search is often the element of a model that limits the

performance. Many models require communication between

an agent and their closest neighbor or their neighborhood,

which is often done using a partitioned grid. The Circles model

uses a circular environment and requires each agent to identify

its neighborhood at each time step. The strength of this model

is its focus on what the authors see as the most limiting aspect

of a model. However, it is limited to that one factor, lacking

variation in issues such as communication and computation

workload.

D. Particle Benchmark

The benchmark proposed by [1] simulates particle agents,

where each particles is moving around the environment space

and reacting with other particles. They present it as a good

proxy for social and ecological simulations as well. In this

benchmark, there are three types of agent: Particle A, Particle

B, and Particle C. Particle A and B start in the environment,

moving around randomly. When one A and one B are in near

enough proximity, they react and become a single Particle C.

This benchmark does include variation in the types of agents,

but every run includes the same three agents types.

III. PROPOSAL

The proposed benchmark uses a similar approach to [6]’s

StupidModel, which starts with a minimal model, and adds

layers of complexity to each version. The proposed model

starts with agents who do not move, change, or interact,

making a “NothingModel”. From this core model, agents and

attributes can be added to the model, like building blocks.

This allows the benchmark to span from the simplest possible

model to complex, computationally demanding model. It is

not feasible to run every possible combination, so a subset of

the possible models must be strategically chosen.

The variations proposed here are to give a range of possi-

bilities for the ways realistic models are most likely to vary.

Other patterns may be useful to users of the model, and such

changes are encouraged.

A. NothingModel

In the simplest model, there will be one agent per grid

location, and they will have no actions. They may have

functions to be created and destroyed, but their “action” step

will be empty. For NetLogo, this may be the patches. The

agents in any implementation do not need to be able to move

around the environment, they merely need to be present as

entities.

836

The appropriate number of timesteps may change between

tests, but a preliminary test with no timesteps may be useful

to account for the time spent in starting the simulation, rather

than in the body of the tasks.

B. Scale

Scale is the simplest factor to vary. Most models use an

input parameters for population and environment size. With the

NothingModel using one agent per grid cell, an initial scale

is set. The population or environment size can be changed

together to keep the density constant, or varying one or the

other can change the density.

Depending on the actions of the agents, the number may

change throughout execution. Both population and environ-

ment are likely to impact the performance, and, especially with

the introduction of parallelism, the ratio will be influential as

well. Two ways the model could use distributed parallelism are

by assigning agents to processes, or by assigning areas of the

environment to the processes. Changing the size of one or the

other may change the performance in the case of parallelism

more than a sequential run.

C. Computation

Computation includes both performing calculations and

accessing the agent’s own attributes. The computational step

will be done through:

• Random number generation

• Pairwise matrix multiplication

• Computing factors

All three of the calculations are chosen because they should

be straightforward to implement in any programming language

and are similar to computations that may occur in actual

models.

For the implementation of the computation, the goal of RNG

and the multiplication is to mimic behaviors typical of ABMs.

Because of this, each should be done in the typical way for

the platform. Pairwise matrix multiplication requires a local

list of numbers, increasing memory usage temporarily, but

RNG can be done with minimal memory use. The factorization

task is included to be a loop of computation, not to be

efficiently implemented. Therefore, the computation should be

implemented in the most naive and tedious way, dividing the

iteration number by every number less than itself, down to 2.

D. Memory

While different platforms may include different data types,

the core types we are working with are numbers, strings,

agents, and lists, as those are the types available in NetLogo

[8]. Though NetLogo allows mixing of types in a list, we will

limit lists to a single type of item, to include more strictly

typed languages.

The main way of varying memory use is adding a list to an

agent. This can be done with a list of any of the other data

types. It can start at a single item in the list, and increase to

as large of a list is able to be executed on the hardware for

the test.

E. Communication

Communication can vary in many ways; it can vary by

size of message, frequency of message, and pattern of mes-

sage partners. Some models will have messages shared only

with neighbors, but others may require all-to-all patterns.

These may have very different performance results. Using

the approach from NetLogo [8], we will allow the agents to

communicate by viewing other agents’ properties.

Key patterns to consider are:

• All-to-all

• Summary statistics (gather)

• Pairs (remaining fixed throughout execution)

• Pairwise (changing throughout execution)

• Neighborhoods

While the implementation of the communication patterns

may depend on the design of the platform, the same com-

munication should be able to occur across platforms. In an

all-to-all patterns, all agents (either globally or of a type) will

access some summary statistic, such as an average property

across the population, and may act based on that information.

With the gather of a summary statistic, similar information can

be calculated and then stored for the user to access after the

simulation. In the pair patterns, agents access properties of a

single other agent, and either access the information about the

same agent repeatedly, or different agents at each step. Finally,

with the neighborhoods, agents access information about the

nearby agents, where the distance may vary between agent

types.

The size and frequency of the communication may also

change. Size may change by whether the agent views only the

location, or the location and a list of properties. Frequency

may change, as the communication may not need to occur

every timestep. Message size can start at the minimum data

size, while frequency can start at every timestep and then be

tested at lower frequencies.

In the NetLogo communication structure, the agents access

data from other agents, which requires all communicated data

to also be a property of an agent. The implication of this

structure is that communication requires memory to vary as

well.

F. Heterogeneity

Heterogeneity is about how similarly the agents behave.

Some platforms may show performance improvements if the

agents all behave similarly or if each agent performs the

same actions every timestep. The level of heterogeneity is the

degree to which the other performance factors vary in a single

simulation. Because of this requirement of variety, it quickly

becomes an issue of an unreasonable number of permutations,

and so a set of variations need to be chosen. Adding different

types of agents can be done by taking the other factors

(computation, memory, communication) and combining them

in a different way for a new agent type.

One aspect of heterogeneity is the distribution of the agents

across the environment. Models may perform differently if the

837

agents cluster in one area, such as when they are attracted to a

resource. While this behavior does not fit into scale, commu-

nication, computation, or memory, it may separate otherwise

similar implementations, especially those with parallelism.

Alongside this, the amount of movement each agent is given

at every timestep may change the performance, especially if

different threads or processes are managing the agents.

Another form of heterogeneity is the frequency of actions.

Frequency is included in communication, but can be applied

as well to computation or changes to agent properties. Like the

distribution across the environment, this may be implemented

differently, and the system may optimize for more or less

frequent events.

G. Example Permutations

A proposed set of combinations to show the impacts of the

performance factors would be:

• NothingModel, varying scale (keeping agent density con-

stant)

• Varying only computation (increasing all types), with no

memory or communication used

• Varying only memory, with no communication or com-

putation used

• Varying only communication (increasing all aspects),

with no computation or memory used

• Agents cluster in one area, moving randomly, with the

stride changed between executions

• Unique agent types from one to the number of agents

in the simulation (randomly generated properties and

behaviors)

• Frequency of actions, varied from 0% probability to

100% probability of occurring, for both communication

and computation

• “Low”, “Medium”, and “High” levels of communication,

memory use, and computation per agent, as well as

density of agents

Notice, most of these do not have a maximum threshold

for the factor that is varied. Instead, when running the tests,

the maximum acceptable runtime should be selected, and the

varied aspect should be increased until the model cannot

complete in the given time. “Low”, “Medium”, and “High”

are also not specifically defined. These may depend on the

hardware used and can be tuned based on varying each factor

alone.

The reference implementation in NetLogo uses Behav-

iorSpace experiments to demonstrate each permutation, while

sharing code between experiments when possible. The base

NetLogo code is less than 250 lines. Depending on the scale

of the tests, they can take seconds, minutes, or hours to run,

but the provided examples are on the order of seconds.

IV. CONCLUSIONS AND FUTURE WORK

We have presented NothingModel, a flexible benchmark for

ABMs. It is able to represent models from a baseline of no

actions to complex interactions between agents. Easy use of

the NothingModel requires a robust set of implementations for

popular and specialized ABM platforms, which is currently

planned work building on the model design.

The number of possible combinations building on the Noth-

ingModel is infinite, but the number is narrowed down to a set

of permutations to span some of the most common problem

types. The ideal set of combinations may not be the ones laid

out here. However, the flexible building block approach to the

benchmark allows for users to formulate the benchmark to the

elements that are most relevant for their use case.

The next step for the NothingModel is implementation using

popular ABM tools, including [3, 5, 8], using the example

permutations to recommend best use cases for each tool.

REFERENCES

[1] Eidah Alzahrani, Paul Richmond, and Anthony J. H.

Simons. “A Formula-Driven Scalable Benchmark Model

for ABM, Applied to FLAME GPU”. en. In: Euro-Par
2017: Parallel Processing Workshops. Ed. by Dora B.

Heras et al. Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2018, pp. 703–714.

ISBN: 978-3-319-75178-8. DOI: 10 . 1007 / 978 - 3 - 319 -

75178-8 56.

[2] Robert Chisholm, Paul Richmond, and Steve Maddock.

“A Standardised Benchmark for Assessing the Perfor-

mance of Fixed Radius Near Neighbours”. In: Euro-Par
2016: Parallel Processing Workshops. Ed. by Frédéric

Desprez et al. Cham: Springer International Publishing,

2017, pp. 311–321. ISBN: 978-3-319-58943-5.

[3] Nicholson Collier and Michael North. “Parallel agent-

based simulation with Repast for High Performance

Computing”. en. In: SIMULATION 89.10 (Oct. 2013),

pp. 1215–1235. ISSN: 0037-5497, 1741-3133. DOI: 10.

1177/0037549712462620. URL: http://journals.sagepub.

com/doi/10.1177/0037549712462620.

[4] Andreu Moreno et al. “Designing a benchmark for the

performance evaluation of agent-based simulation appli-

cations on HPC”. en. In: The Journal of Supercomputing
75.3 (Mar. 2019), pp. 1524–1550. ISSN: 1573-0484. DOI:

10.1007/s11227-018-2688-8. URL: https://doi.org/10.

1007/s11227-018-2688-8.

[5] Michael J North et al. “Complex Adaptive Systems

Modeling with Repast Simphony”. In: Complex Adaptive
Systems Modeling 1 (Mar. 2013). DOI: 10.1186/2194-

3206-1-3. URL: https://doi.org/10.1186/2194-3206-1-3.

[6] Stephen F. Railsback, Steven L. Lytinen, and Stephen

K. Jackson. “Agent-based Simulation Platforms: Review

and Development Recommendations”. en. In: SIMULA-
TION (Sept. 2006). DOI: 10.1177/0037549706073695.

[7] Alban Rousset et al. “A survey on parallel and distributed

multi-agent systems for high performance computing

simulations”. In: Computer Science Review 22 (Nov.

2016), pp. 27–46. ISSN: 1574-0137. DOI: 10 . 1016 / j .

cosrev.2016 .08 .001. URL: https : / /www.sciencedirect .

com/science/article/pii/S1574013715300435.

[8] U. Wilensky. NetLogo. Evanston, IL, 1999. URL: http:

//ccl.northwestern.edu/netlogo/.

838

