J. Parallel Distrib. Comput. 118 (2018) 233-246

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

TSGL: A tool for visualizing multithreaded behavior "

Check for

Joel C. Adams *, Patrick A. Crain, Christopher P. Dilley, Christiaan D. Hazlett, Lpeites
Elizabeth R. Koning, Serita M. Nelesen, Javin B. Unger, Mark B. Vande Stel

Department of Computer Science, Calvin College, Grand Rapids, MI, USA

HIGHLIGHTS

Detailed presentation of TSGL visualization examples.
Description of a CS 2 lab exercise in which TSGL has been used.

Guidelines for creating multithreaded visualizations.
How visualization can aid testing and debugging.

Why a thread safe graphics library (TSGL) is needed in the multicore era.
Overview of the project goals, design, implementation issues and how they were resolved.

Assessment evidence that use of a multithreaded visualization significantly improved student understanding of a parallel abstraction.

ARTICLE INFO ABSTRACT

Article history:

Received 14 June 2017

Received in revised form 26 January 2018
Accepted 26 February 2018

Available online 9 March 2018

Since multicore processors are now the architectural standard and parallel computing is in the core
CS curriculum, CS educators must create pedagogical materials and tools to help their students master
parallel abstractions and concepts. This paper describes the thread safe graphics library (TSGL), a tool by
which an educator can add graphics calls to a working multithreaded program in order to make visible

the underlying parallel behavior. Using TSGL, an instructor (or student) can create parallel visualizations

Keywords:
Graphics
Library
Multicore
Parallel
Threads
Visualization

parallel concepts.

that clearly show the parallel patterns or techniques a given program is using, allowing students to see the
parallel behavior in near real-time as the program is running. TSGL includes many examples that illustrate
its use; this paper presents a representative sample, that can be used either in a lecture or a self-paced
lab format. We also present evidence that such visualizations improve student understanding of abstract

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The vast majority of central processing units (CPUs) being man-
ufactured today have multiple cores, and each of a CPU’s cores can
simultaneously execute different statements in real-time. Quad-
core CPUs are common, and with sufficient budget, one can pur-
chase CPUs with 8, 12, 16, 18, 20, 22, 24, or even more cores [10,9].

Traditional sequential programs will not run faster on such
CPUs, as such programs have a single thread of execution. Indeed,
as such programs are run on CPUs with more and more cores,
sequential programs use the available hardware less and less ef-
ficiently, as illustrated in the formula given in Fig. 1.

* Corresponding author.
E-mail address: adams@calvin.edu (J.C. Adams).

https://doi.org/10.1016/j.jpdc.2018.02.025
0743-7315/© 2018 Elsevier Inc. All rights reserved.

For example, if availableCores is 16, then sequentialProgramCore-
UtilizationPct is just 6.25%.

To take advantage of multicore hardware, programs must be
designed and written as parallel programs, with multiple threads
of execution. An effective multithreaded program not only uses
the underlying hardware efficiently, it also runs faster on such
hardware. Put differently, its performance scales with the number
of available cores.

Since multicore CPUs are the hardware foundation on which
virtually all of today’s software will run, it follows that future
software developers need to learn about parallel programming
in general and multithreaded programming in particular. Accord-
ingly, where parallel computing used to be an elective topic in the
CS curriculum, it is now a core topic in both the IEEE TCPP Curricu-
lum Recommendations [17] and the ACM/IEEE CS 2013 Curriculum
Recommendations [18].

https://doi.org/10.1016/j.jpdc.2018.02.025
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.02.025&domain=pdf
mailto:adams@calvin.edu
https://doi.org/10.1016/j.jpdc.2018.02.025

234 J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

1.0

ialP ilizationPct = 100% X ————————
sequentialProgramCoreUtilizationPct 00% availableCores

Fig. 1. Sequential Program Core Utilization Percentage.

Most future software developers are trained by computer sci-
ence (CS) faculty members. It is thus the responsibility of CS faculty
members to ensure that their students learn about parallelism.
That is, CS faculty members must create and use the pedagogical
tools and materials that will help their students understand paral-
lel abstractions and concepts [6,14].

There is an old saying:

“A picture is worth 1000 words.”

This saying claims that one well-done visual presentation of in-
formation can communicate as effectively as a lengthy textual or
verbal presentation. In keeping with this saying, many CS instruc-
tional materials use figures and diagrams to try to help students
build mental models of concepts and abstractions. These can work
for some topics, but their static nature makes them less effective at
illustrating the behavior of complex algorithms and processes.

Recognizing this limitation, computer science education re-
searchers have created dynamic visualizations of sequential
algorithms and found that such visualizations help students
understand those algorithms (e.g., [7,11,19]). Subsequent research
found that those who explore a visualization interactively learn
significantly more than those who view it passively [16]. Others
are using block-based languages such as Scratch [5] and Snap! [8]
to help programming novices visualize parallelism or concurrency,
or creating such visualizations for pre-college students [20]. This
work differs from these previous works by exploring how the
interactive visualization of parallel design patterns [15] affects a
student’s understanding of those patterns.

We began our project by trying to create interactive, real-time
visualizations of multithreaded behavior. To start on this project,
we first searched for a graphics library that was thread-safe, mean-
ing a library that would allow multiple threads to write to the
screen without producing a race condition. Imagine our surprise
when we were unable to find one anywhere! We examined nearly
a dozen graphics libraries, and none of them would guarantee
thread-safety.

The root problem is that graphics libraries store the graphical
information being displayed on the screen in a data structure called
a frame buffer. This frame buffer resides in memory, and if two
threads try to write graphical information to it at the same time,
a data race occurs, usually causing the multithreaded program to
crash.

Unable to find a graphics library that was thread-safe, we de-
cided to create one. We (descriptively but unimaginatively) named
our creation the thread-safe graphics library, or TSGL.

In Section 2, we provide an overview of TSGL, and Section 3
presents several examples that illustrate how it can be used to
let students see multithreaded algorithms operating in near real-
time. Section 4 presents evidence that such visualizations improve
student learning. Section 5 presents our recommendations for
those wanting to use TSGL to build their own visualizations, and
Section 6 finishes with our conclusions.

2. TSGL

In this section, we present our design goals for TSGL, our design,
and some of the implementation details.

2.1. TSGL design goals

Our list of objectives for TSGL included:

e An easy-to-use Canvas class supporting 2D graphics, to
which multiple threads can safely draw (or read) pixels, and
a thread-safe CartesianCanvas class (a subclass of Canvas) to
easily create Cartesian coordinate systems.

e A Shape class hierarchy for drawing basic shapes such as
triangles, rectangles, circles, polygons, and so on.

e A Function class hierarchy for easily plotting functions.

e The ability to create and display multiple Canvas or Carte-
sianCanvas objects, simultaneously or in sequence.

e Support for reading, writing, displaying, and processing
PNG, JPEG, and BMP image files; plus safely getting and/or
setting the individual pixels in such images.

e Interacting with a Canvas using a mouse or keyboard.

e Support for each thread to draw in a unique color, so that
items drawn by different threads can be easily identified.

e Support for easily delaying a thread’s execution, if slowing
down a computation is desired.

e Platform independence and high performance.

e Operability with C++11, OpenMP, and POSIX threads.

e HTML-based API documentation like the Java API.

2.2. TSGL design

To achieve our design goals, we designed classes to provide the
needed functionality and organized them into a class hierarchy,
part of which is shown in Fig. 2.

For example, the Timer class in Fig. 2 provides the functionality
needed to slow down a computation.

To achieve our goals of platform independence and high perfor-
mance, we chose OpenGL as our graphical foundation.

To handle OpenGL extensions conveniently, we used the
OpenGL Extensions Wrangler (GLEW) library (glew.sourceforge.
net). To interact with a Canvas using a mouse or keyboard, we used
the GLFW library (glfw.org).

To ensure operability with C++11, OpenMP, and POSIX threads,
we wrote TSGL in C++11, and used features of the OpenMP and
POSIX thread libraries.

To create HTML-based API documentation, we used the Doxy-
gen system (www.doxygen.org).

2.3. TSGL implementation issues

TSGL was created over many person-months of effort, and many
implementation issues arose during that time. In the rest of this
session, we discuss a sample of some of the more interesting issues
and how we resolved them.

One issue we encountered was the frame-buffer race condition
described in Section 1. To address this problem, we used the Shared
Queue parallel design pattern [15]. More precisely, each TSGL Can-
vas has its own:

e shared queue, capable of storing graphical items; and
e render-thread, responsible for rendering graphical items for
that Canvas.

The Canvas class provides a variety of drawing methods, includ-
ing drawPixel(), drawLine(), drawRectangle(), and so on, each with
parameters appropriate for the object being drawn. Each method
uses its parameters to define the graphical item being drawn, and
then deposits that item in the Canvas’s shared queue, which is
thread-safe. The render-thread retrieves the graphical items from
the shared queue.

http://glew.sourceforge.net
http://glew.sourceforge.net
http://glew.sourceforge.net
http://www.glfw.org
http://www.doxygen.org

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 235
Canvas Shape
Z% | [| [[l |
Cartesian Colored . Poly .
Eomme Polygon Image || Line Line Rectangle || Text || Triangle
? Ttem |
Image .
Function Loa (ige . Color Timer Array
4& | [[|
| | |
Cosine Sine Tangent

Fig. 2. A partial TSGL class structure diagram.

Initially, we had the render-thread draw each graphical item
to OpenGL’s framebuffer. This resolved the frame buffer race con-
dition because the render-thread was the only thread interacting
with the framebuffer.

However having the render-thread do all the drawing proved to
be a bottleneck, so we revised the render-thread to have it convert
the graphical items to textures in OpenGL's framebuffer, which the
GPU then draws on the screen. The render-thread was still the only
thread interacting with the framebuffer, but since a typical GPU has
hundreds or thousands of cores, the OpenGL textures are processed
in parallel, eliminating the bottleneck. With this refinement, we
were able to stress-test TSGL with 1024 threads all drawing to the
same Canvas and maintain a full 60 frames per second display rate.

3. Examples

In this section, we explore the use of TSGL to see the behavior
of parallel algorithms. We have organized this section around
parallel design patterns [13,12,15], which are elegant, reliable, and
efficient solutions to problems that occur commonly in parallel
programming. As an example, the Shared Queue data structure
mentioned in Section 2.3 is a parallel design pattern — a self-
synchronizing buffered channel through which parallel tasks can
send or receive information. We emphasize parallel patterns for
the following reasons:

1. Parallel patterns are the result of decades of experience by
professional developers of parallel software. As such, they
represent the industry’s best practices in writing software
that is both reliable and scalable.

2. Parallel software professionals think in terms of these pat-
terns, so the more we can get our students to incorporate
these patterns into their thinking, the more like profession-
als our students will be.

3. The low-level details of parallel hardware and software
technologies change frequently, and keeping abreast of
those changes may seem overwhelming. By contrast, the
parallel design patterns are a relatively stable body of
knowledge, making them a useful intellectual framework
anyone writing parallel software [3].

In the rest of this section, we explore ways that TSGL can be used
to visualize the behavior of two of these patterns.

3.1. The Parallel Loop pattern

In many programs, most of the time is spent in loop statements.
This is such a common occurrence, programmers have given it a
name — the 90-10 Rule (also known as the principle of locality):

“90% of the time is spent in 10% of the code.”

Using parallelism to speed up the processing of a time-consuming
loop is a common problem in parallel programming, so parallel
professionals have identified a pattern for solving it, known as
the Parallel Loop pattern. In the simplest form of this pattern, the
compiler generates code to (a) identify n, the number of available
threads, (b) divide the iteration-range of the loop into n equal-sized
chunks, and (c) give each thread one of the chunks to perform.

Explaining this behavior to students can be a challenge, even
using a parallel education tool like a patternlet [2]. As we shall
see, TSGL makes it possible for students to see the behavior of this
pattern in operation in near real-time.

3.1.1. Image processing: a balanced-load Parallel Loop

For students who have grown up with smart phones and their
built-in cameras, creating a “photoshop-style” effect to process
large photographic images can be a motivating way to introduce
parallelism [14]. TSGL lets us do this and see the transformation
happening in near real-time.

To illustrate, Fig. 3 presents a large and colorful PNG image
being displayed using a TSGL Canvas.

As an example “photoshop-style” effect, we will process this
image using the color inversion transformation.

There are different algorithms for inverting a color image, de-
pending on how the RGB color information is stored. If a color’s
RGB components are integers between 0 and 255, one pseudo-code
algorithm is as follows:

236 J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

Unnamed Window ¥ %

Fig. 3. A colorful PNG image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Canvas canvasl, canvas2;
canvasl.loadImage (imageFile) ;
for each y in canvasl.getRows() ({
for each x in canvasl.getColumns () {
Pixel p = canvasl.getPixel(x,y)
newR = 255 - p.getR();
newG 255 - p.getG() ;
newB = 255 - p.getB();
canvas2.setPixel (x, y, newR, newG, newB);

If the image being processed is sufficiently large and a single
thread performs the algorithm, then that thread’s progress may be
slow enough that it can be seen in real time. For smaller images,
TSGL lets us slow the processing as needed for a person to see the
thread’s progression.

In this algorithm, each pixel’s value is retrieved and modified
independently of all other pixel values. Since each of the loop’s
iterations is independent of the others, we can use the Parallel Loop
pattern to parallelize this algorithm. The following pseudocode
shows how we might do so using OpenMP’s built-in mechanism
for this pattern:

Canvas canvasl, canvas2;
canvasl.loadImage (imageFile) ;
#pragma omp parallel for
for each y in canvasl.getRows () {
for each x in canvasl.getColumns () {
Pixel p = canvasl.getPixel (x,V);
newR = 255 - p.getR();
newG = 255 - p.getG();
newB = 255 - p.getB();
canvas2.setPixel (x, y, newR, newG, newB);

Suppose that our Canvas has 800 rows, and that we are running
our program on a quad-core CPU. Then when execution reaches the

#pragma omp parallel for directive, OpenMP will divide the 800
iterations of the outer for loop into four chunks (0-199, 200-399,
400-599, and 600-799), and give each chunk to a different thread.

Fig. 4 is a screenshot of four threads inverting the image from
Fig. 3, with the computation about two thirds done.

The four gray bands in Fig. 4 are the portions of the image that
were unprocessed at the time the screenshot was taken; the other
areas’ pixels have been inverted. Note that the four gray bands are
all equal in size, indicating that each thread has an equal amount of
work remaining. Conversely, each thread has made equal progress
on its chunk of the image. TSGL thus lets a student see: (i) what
work each thread is doing; (ii) when that work is being done, in
relation to the other threads’ work; and (iii) how fast each thread
is working, compared to its peers.

At the end of the loop, we have each thread draw a uniquely-
colored rectangle around its chunk of the image, so that its con-
tribution toward the overall computation can be clearly seen, as
shown in Fig. 5.

TSGL makes it possible to provide students with a sequential,
graphical version of any of the common image transformations
(e.g., color-to-grayscale, sepia tinting, resizing, brightening, sharp-
ening, blurring, etc.) and have the students time the operation. If
they then parallelize the operation’s processing loop and rerun the
program, they will see and experience the difference in speed and
behavior between the original sequential version and their parallel
version. By interactively varying the number of threads in such
a parallel program and seeing the result, first-year students can
develop an intuitive understanding of abstract concepts like the
Parallel Loop pattern, scalability, speedup, and so on.

3.1.2. Numerical integration: a different balanced-load Parallel Loop

For CS students who have had integral calculus, integration
should be a familiar concept, and they may be interested in learn-
ing how integration can be performed computationally. While
there are a variety of methods that can be used, one that is easy
for students to understand is to compute the area between the
function’s graph and the x-axis for the specified range of x values.
A pseudo-code algorithm to compute the integral of £ (x) from a
to b using the “rectangle method” might be given as follows:

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 237

unnamed Window -+ x

Fig. 4. Color inversion using four threads: In progress. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Unnamed Window -+ %

Fig. 5. Color inversion using four threads: Finished. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

heights = 0.0;
recWidth = (b-a) / NUM_RECTANGLES;
halfRecWidth = recWidth / 2.0;
for (i = 0; i < NUM _RECTANGLES; i++) {
xLo = a + 1 * recWidth;
xMid = xLo + halfRecWidth;
y = £(xMid) ;
heights += y;
}
return heights * recWidth;

For each rectangle, the algorithm’s loop accumulates the sum
of the rectangles’ “heights” (from the rectangle’s midpoint on
the x-axis up to the curve) in the variable heights. When the
loop is completed, we multiply those accumulated “heights” by a
rectangle’s width to compute the return value.

To convert this algorithm into a parallel algorithm, we might
again use OpenMP and the Parallel Loop pattern. To help students
see how the algorithm works, we can use TSGL to (i) give each
thread a color, and (ii) have the thread draw its rectangles, as
shown in the following pseudo-code:

238 J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

800 Integral of unit circle from 0 to 1 using Rectangles

800 Integral of unit circle from 0 to 1 using Rectangles

(@)

(b)

Fig. 6. Integration with one thread: (a) 10 rectangles; (b) 100 rectangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

heights = 0.0;
recWidth = (b-a) / NUM_RECTANGLES;
halfRecWidth = recWidth / 2.0;

CartesianCanvas canvas (MAX X, MAX Y);
canvas.showAxes () ;
canvas.drawFunction (f) ;
#pragma omp parallel reduction (+:heights)
{
threadID = getThreadID() ;
Color color = canvas.getMyColor (threadlID) ;
#pragma omp for
for (i = 0; i < NUM_RECTANGLES; i++) {
xLo = a + 1 * recWidth;
xMid = xLo + halfRecWidth;
y = f(xMid);
canvas.drawRec (xLo, 0, xLo+recWidth, y, color);
heights += y;
}
}
return heights * recWidth;

That is, we (1) create a CartesianCanvas object that all threads
will share; (2) tell that canvas to display its axes; and (3) tell that
canvas to draw the function we are integrating. We then (4) direct
OpenMP to create a parallel block, launching new threads; (5) have
each thread retrieve its id number; (6) use that id number to give
each thread a unique color; and (7) direct OpenMP to divide the
iterations of the for loop among the threads launched in step 4.
Within the loop, (8) each thread draws its current rectangle on the
canvas, using its unique color.

Fig. 6 shows two screenshots of a running implementation of
this algorithm, using a quarter of the unit circle function for £ ()
and one thread. In the left shot, NUM_RECTANGLES is 10; in the
right shot, its value is 100.

Since a single thread is performing the integration, each rectan-
gle is drawn using the same color (red). This program lets us specify
the number of rectangles and threads from the command-line, so
Fig. 7 shows the same computation using 10 rectangles with two
vs. four threads.

As before, TSGL lets us see how the Parallel Loop pattern works.
Fig. 7a shows that for two threads, the pattern divides the iteration
range into two contiguous “chunks”; Fig. 7b shows that for four
threads, it divides the range into four such “chunks”. Since each
thread is coloring the rectangles in its “chunk” using its unique
color, we can infer (and verify) that for n threads, the pattern
divides the iteration range into n contiguous “chunks”. It is also
easy to see how this pattern divides the iterations when they are
not evenly divisible by the number of threads, as shown in Fig. 7b.

By letting us color-code each thread differently, TSGL lets us
readily see how a computation’s workload is being divided among
its threads.

3.1.3. The Mandelbrot set: an imbalanced-load Parallel Loop
The Mandelbrot set is a well-known fractal figure. A pseudo-
code algorithm to draw it might be simplistically given as follows:

Canvas canvas (MAX X, MAX Y);
for (y = 0; y < MAX Y; y++) {
for (x = 0; x < MAX X; x++) {
Color color = mandelColor(x, y):;

canvas.drawPoint (x, y, color);

In this algorithm, we have hidden the details of computing
whether a given (x,y) point is in the Mandelbrot set within
a mandelColor () function. This function is sufficiently time-
consuming (i.e., it contains another loop) that on many computers,
one can see the individual rows of the figure being drawn. On
newer and faster computers, the figure may be drawn too quickly
to see this, but TSGL lets us slow the computation sufficiently to
see this occur.

As with the image processing and integration examples, the
Parallel Loop pattern can be used to divide the iterations of this al-
gorithm’s outer loop into “chunks” performed by different threads.
However, unlike our previous examples, the time to process an
(x,y) point in the Mandelbrot figure can vary widely. TSGL lets

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 239

Integral of unit circle from 0 to 1 using Rectangles

00 integral of unit circle from 0 to 1 using Rectangles

(a)

(b)

Fig. 7. Integration with 10 rectangles: (a) Using two threads; (b) Using four threads. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 8. Mandelbrot using eight threads; In progress.

students see this time-variance; if we use the Parallel Loop pattern
and eight threads, we observe behavior like that shown in Fig. 8.

Like Figs. 4, 8 shows the computation in an intermediate state.
However, where the threads in Fig. 4 had made equal progress,
the eight threads in Fig. 8 have not. More precisely, threads 0
and 1 have completed their chunks (the top two eighths of the
figure), and threads 6 and 7 have completed their chunks (the
bottom two eighths), but threads 2, 3, 4, and 5 are still working
on their respective eighths, as indicated by the four gray bands in
the middle of the figure.

This behavior occurs because points within the Mandelbrot
set (the black portion of the figure) take longer to compute than
points outside the set. Since the threads drawing the middle rows

have more inside-the-set points to compute, it take them longer
to complete their “chunks”. TSGL's near real-time drawing can
thus let students see non-uniform workloads as they occur, which
can be used to motivate the introduction of other parallel design
patterns that do a better job of balancing the different threads’
work-loads.

When finished, we have each thread draw a colored rectangle
around the portion of the figure it drew, as shown in Fig. 9.

3.2. The actor pattern and synchronizing accesses to shared resources

Another parallel design pattern is the Actor pattern, in which
autonomous actors perform their prescribed behaviors like actors

240 J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

Fig. 9. Mandelbrot using eight threads; Finished. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Dining Philosophers

[+ x

Fig. 10. Visualizing the Dining Philosophers: Eight philosophers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

in a play. This pattern can be used to solve a variety of problems,
including the classic Dining Philosophers problem. In this problem,
n silent philosophers sit around a table, with a large bowl of food
in the middle. There are n forks on the table, each positioned
between a pair of philosophers. A philosopher may be thinking,
hungry, or eating, and may think for an arbitrary length of time
before becoming hungry, but in order to eat, he or she must acquire
both of the adjacent forks. As shared resources, the forks represent
a potential source of race conditions. The problem is to devise
a strategy that all philosophers can follow, that ensures: (a) no
deadlock occurs, (b) no livelock occurs, (c) no philosopher starves,

and (d) that a philosopher who is thinking does not prevent a
philosopher who is hungry from eating.

Each actor in the Actor pattern has its own thread; to use this
pattern to solve the Dining Philosophers problem, each philoso-
pher has its own thread that performs the strategy in parallel
with the others. TSGL makes it possible to augment a strategy
with graphics calls, using color-coding to represent a philosopher’s
state, and thus create a visualization that lets students see that
strategy running in near real-time. Fig. 10 shows our visualization
of this problem using eight philosopher-threads, in which the large
central gray circle represents the table, the eight circles around
the table represent the philosophers, the eight forks can be seen

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 241

Dining Philosophers.

Fig. 11. Visualizing the Dining Philosophers: Five philosophers.

between the philosophers, and the small brown dots “behind” each
philosopher tally the meals she has eaten.

A separate “Legend” window (not shown) indicates the strategy
being used and the state each color represents: blue indicates
thinking, red indicates hungry with no forks, purple indicates
hungry with the left fork but not the right, orange indicates hungry
with the right fork but not the left, and green indicates eating.
When a fork is free, it is equidistant between two philosophers;
when a philosopher has obtained a fork, the fork is adjacent to that
philosopher.

If we use the eight compass points to denote the philosophers in
Fig. 10, the north, northeast, east, and southeast philosophers are
all thinking, as indicated by their blue colors. The south philoso-
pher is hungry and has obtained its left fork, but has not yet picked
up its right fork. The southwest philosopher is hungry but cannot
eat until her neighboring philosophers release their forks. The west
philosopher has obtained both forks and is eating, as indicated by
her green color. The northwest philosopher is hungry but has not
yet picked up the fork between her and her northern neighbor. The
brown meal dots behind each philosopher let us see at a glance that
no philosopher is starving.

The number of philosophers can be specified when the program
is run; Fig. 11 shows it running with five philosophers.

In Fig. 11, one philosopher is eating, two are thinking, one
is hungry but has acquired no forks, and one is hungry but has
acquired its right fork. Again, the brown “meal” dots behind each
philosopher indicate that no philosopher is starving, and that each
is eating about as often as its peers. Some variance is normal, as
each philosopher thinks for a random length of time.

This visualization also lets students interactively explore in-
correct strategies. For example, Fig. 12 shows a version of the
program in which the philosophers follow a strategy that leads to
deadlock.

In Fig. 12, each philosopher has acquired its right fork and
is waiting to acquire its left fork. In this (incorrect) strategy, a
philosopher thinks for a while and when she gets hungry: (1)
attempts to grab her right fork, (2) attempts to grab her left fork,
(3) eats, and (4) releases her fork when she is done eating. If each
philosopher happens to get hungry at the same time, a circular wait
happens, resulting in deadlock.

Relatedly, this program lets students interactively specify a
different incorrect strategy that produces livelock. In this strategy,
a philosopher thinks for a while and when she gets hungry, she:
(1) attempts to grab her right fork, (2) attempts to grab her left
fork and if it is not available, releases her right fork, (3) eats,
and (4) releases her fork when she is done eating. Again, if each
philosopher happens to get hungry at the same time, each picks up
her right fork, puts down her right fork, picks up her right fork, puts
down her right fork, ...endlessly. The visualization lets us see that
behavior, as the philosophers endlessly cycle between the two red
and orange states shown in Fig. 13.

TSGL thus makes it possible to create visualizations for “classic”
synchronization problems like the Dining Philosophers problem.
We are currently working on visualizations of other “classic” prob-
lems: the Producers-Consumers problem, the Readers-Writers
problem, the Sleepy Barber problem, and so on.

4. Assessment

Since 2012, we have devoted week 12 (of our 15-week
semester) in our CS2 (Data Structures) course to OpenMP multi-
threading [1]. This week includes three classroom sessions, plus
a hands-on lab session in which students use the Parallel Loop
pattern to speed up slow operations, and measure their runtimes
using 1, 2, 4,6, 8, 10, 12, 14, and 16 threads. To assess our students’
long-term recall of this material, our final exam includes four
questions that explore their understanding of:

1. What OpenMP is.

2. How an OpenMP parallel block behaves.

3. Which thread behaviors produce race conditions.

4. How an OpenMP thread can discover its identity number.

The 52 students in our Spring 2015 course were spread across
two lab sections of 27 and 25 students. To assess the effect of
TSGL-visualization on our students’ long-term recall of the Parallel
Loop pattern, we ran an experiment using these two lab sections as
the control and experimental groups, respectively:

242

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

™)

Dining Philosophers

‘@

.’\

Fig. 12. Visualizing the Dining Philosophers: Deadlock.

= e ==

Dining Philosophers

Fig. 13. Visualizing the Dining Philosophers: Livelock. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

e Group 1 (the control group) completed the same exercise as
the students in preceding semesters, using OpenMP to speed
up the addition and transpose operations for large matrices.

e Group 2 (the experimental group) used OpenMP to speed
up the inversion of a large image, using an interactive TSGL
visualization to see the running computation.

The research question we were seeking to answer with this
experiment was as follows:

Does visualizing the behavior of the Parallel Loop pattern improve
a student’s long-term recall of that pattern’s behavior?

Both lab exercises used the Parallel Loop pattern in almost identical

ways:

o Both exercises’ programs use nested for loops to process a
two-dimensional data structure.

[e]

[e]

[e]

Both exercises have students parallelize the computation by
adding the same #pragma omp parallel for directive
before the outer for loop.

Both exercises’ have the students modify the programs to
output the time required to perform the operation.

Both exercises have the students run the program multiple
times, interactively varying the number of threads; record-
ing the resulting times in a spreadsheet, and creating a chart
that plots the execution time against the number of threads,
so that the students can see how the run-times decrease as
more threads are used.

Both exercises’ programs output the resulting data struc-
ture.

Both exercises included static figures depicting the parallel
loop pattern’s behavior. In the control group, these figures
showed how the pattern would divide the rows of a matrix
among the threads; in the experimental group, these figures
showed how the pattern would divide the rows of an image
among the threads.

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 243

The primary difference in the two exercises was that in our
experimental group, the program’s output let students to see the
image being inverted in near real-time (see Fig. 4) and see this
behavior change as they varied the number of threads. By contrast,
the output in our control group was simply the final matrix, after
the operation had completed.

To answer our research question, we added a fifth question to
the final exam (but we did not count it toward a student’s exam
score). Using the final exam to assess the results of our experiment
had two benefits:

1. Since all students in the course take the final exam, using the
exam question as our assessment instrument guaranteed us
a high response rate. Given the relatively small numbers
of students in our control and experimental groups, a high
response rate was important to maximize the chances of
producing statistically significant results.

2. Using the final exam as our assessment instrument max-
imized the time between our experiment and our assess-
ment. This was important because we were evaluating the
effect of the visualization on our students’ long-term recall.

The question we added to our final exam is shown below:

5. Suppose the following for loop is performed by two threads:
vector<int> v (8);
#pragma omp parallel for
for (int i = 0; i < v.size(); i++) {
cout << v[i] << endl;
}

Which of the following is true?

A) Thread 0 will output the items in v[0] through v[3];
thread 1 will output items in v[4] through v[7].

B) Thread 0 will output the items in v[0], v[1], v[6], V[7];
thread 1 will output the items in v[2], v[3], v[4], v[5].

C) Thread 0 will output the items with even index values (0,2,4,6);
thread 1 will output the items with odd index values (1,3,5,7).

D) Thread 0 will output the items with odd index values (1,3,5,7);
thread 1 will output the items with even index values (0,2,4,6).

E) Thread 0 will output four items with random index values;
thread 1 will output the remaining items.

F) None of these is true.

Note that where the exercises performed by our control and
experimental groups both used OpenMP’s Parallel Loop pattern
to process a two-dimensional data structure, question 5 requires
the students to recognize how that same pattern will process a
one-dimensional data structure. It thus strips away all contextual
overlap except the behavior of the Parallel Loop.

Our students’ final exam scores formed an approximately nor-
mal distribution. Since our goal was to determine whether the
visualization had a positive effect for the students in our experi-
mental group, we only needed a test that would evaluate differ-
ences in one tail (i.e., the positive end) of the distribution. We
accordingly used a 1-tailed T-test to examine the significance of
any difference in the mean of the students’ responses to our five
questions. Our null hypotheses were that students in the two
groups would do equally well on each of the five exam questions.
Fig. 14 summarizes our two groups’ performances on the five exam
questions, as well as the statistical significance (p-values) of their
differences.

These results led us to accept the null hypothesis for the original
four questions, but led us to reject the null hypothesis for question
#5. Note that both groups interactively explored the use of the
Parallel Loop pattern to speed up the processing of a 2-dimensional

Exam Group 1 Group 2
Question | (Control) | (Experimental) LAEID
1 77.8% 85.0% 0.26764
2 85.2% 80.0% 0.32762
3 18.5% 30.0% 0.19133
4 88.9% 85.0% 0.23201
5 7.4% 40.0% 0.00685

Fig. 14. Percentage of correct question-responses by group.

Control Group Experimental Group
Question 5 i Percentage it Percentage
Answers Responses of Responses Responses of Responses
(out of 27) (out of 25)
A 2 7.4% 10 40%
B 0 0% 0 0%
C 11 40.7% 5 20%
D 1 3.7% 4 16%
E 12 44.4% 5 20%
F 1 3.7% 1 4%

Fig. 15. Table of student responses to question 5.

structure, but the experimental group could see the behavior oc-
curring where the control group could not. The difference in the
two groups’ performances on question 5 thus strongly suggests
that seeing a multithreaded behavior like the Parallel Loop pattern
can significantly improve a student’s understanding of such ab-
stractions, compared to a non-visual exercise in which a student
must build his or her own mental model of the parallel behavior.

Fig. 15 provides a table that breaks down the students’ re-
sponses to question 5.

As can be seen in Fig. 15, the plurality of the students in
the experimental group answered question 5 correctly; most of
this group’s incorrect responses are almost equally distributed
between answers C (20%), D (16%), and E (20%). It is unclear exactly
why these students were confused (especially those who chose D),
but we discuss some possibilities below.

By contrast, 44.4% of the students in the control group chose
answer E, which is surprising, given its “random” aspect. During
our lecture sessions that week, we live-demoed OpenMP Parallel
Loop patternlets [2] that, for each iteration i, cause the thread
performing that iteration to display its id number and the value
of the iteration number i. In the patternlet for the Parallel Loop
‘s default behavior, each thread is assigned a contiguous equal-
sized “chunk” of the iteration range (as reflected in answer A),
but each thread writes its output to stdout, where these outputs
are interleaved non-deterministically. After the final exam, we
talked to some of the students in the control group. From these
conversations, it appears that in the absence of a visualization that
lets one see the default “chunking” behavior, these students (along
with 20% of the students in our experimental group) attributed the
nondeterministic interleaving of the different threads’ outputs to
the Parallel Loop pattern, and so never understood the essence of
the “chunking” behavior.

Nearly as many control group students (40.7%) chose answer
C. In addition to live-demoing the default “chunking” Parallel Loop
patternlet in our lectures, we also live-demoed the “striping” ver-
sion of the Parallel Loop patternlet, in which a loop’s iterations
are divided in a round-robin fashion (as reflected in answer C).
We hypothesize that, lacking a visualization that lets them see the
default, behavior, these students (along with 20% of the students in

244 J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

our experimental group) misremembered and thought that “strip-
ing” was this pattern’s default behavior.

The reader may be wondering why so few students answered
question 3 correctly, compared to questions 1, 2, and 4? The reason
is that the best answer to that question was an “all of the above”
choice. Nearly all students chose an answer that was at least
partially correct, but only the percentages shown in Fig. 14 chose
the best answer. Note that 30% of our experimental group chose
the best answer compared to 18.5% of the control group, but this
improvement was not significant (p = 0.19133).

We also compared our two groups’ aggregate responses to
questions 1-4. There were no significant differences in the correct-
ness of their responses to these questions (p = 0.36166).

We also compared our two groups’ responses on questions
1-4 to the responses of the 183 students who took the course (and
did the matrix exercise) the previous six semesters. There were no
significant differences between the correctness of the responses
of students from previous semesters and our control group (p =
0.19232), nor our experimental group (p = 0.42134).

Our TSGL visualization thus had no measurable significant ef-
fect on student mastery of the parallel concepts assessed by our
four original exam questions, but it did significantly improve stu-
dent understanding of the Parallel Loop’s default behavior. Because
of this, we now have all students complete our visual image-
processing exercise instead of our non-visual matrix-processing
lab exercise.

Both groups used the same Parallel Loop pattern to accelerate
an operation on a 2-dimensional data structure, but the fact that
our control group’s structure was a matrix while our experimental
group’s structure was an image represents a potential confounding
factor: perhaps that difference is somehow responsible for the
improved learning shown on question 5? This question might
be resolved by conducting a follow up experiment in which two
groups both parallelize an operation on an image, but where
one group gets to see the parallelization happening in real-time
(i.e., while the operation is running); the other group only gets to
see the transformed image after the processing has completed. We
conjecture that such an experiment will produce results similar to
those reported here; if we conduct such an experiment, it will be
the subject of a future report.

5. Discussion

In this section, we discuss other aspects related to TSGL and
multithreaded visualization.

5.1. Visualizing other parallel patterns

We have seen that TSGL makes it possible to visualize par-
allel computing abstractions like the Parallel Loop and the Actor
patterns. This raises the question: Can TSGL be used to create
visualizations of other parallel abstractions?

We believe the answer to this question is “Yes” and that the
potential of TSGL is mainly limited by our creativity. For example,
we have begun work on a visualization of the Task Queue pattern,
as follows:

a. Open a Canvas whose background is white and whose width
is proportional with m, the length of the queue;

b. On the Canvas, draw m black rectangles, each representing
one of the queue’s tasks, saving a reference to each rectangle
in a shared queue.

c. Each time a thread gets a task from the task queue, use
the shared queue to change the color of the corresponding
rectangle from black to white.

At the outset, the Canvas will show m black rectangles, but as
tasks are removed from the task queue, the corresponding rectan-
gles will ‘disappear’ into the white background. The result will be
a kind of “reverse progress bar” that grows shorter as the length of
the task queue decreases. Alternatively, in step (c), a thread could
change the color of the rectangle to that thread’s unique color. At
the end, the distribution of colored rectangles on the Canvas would
reflect the distribution of the tasks among the threads. We plan to
use usability testing to decide which of these two approaches is
preferable.

As a second example, we are working on a TSGL visualization of
the parallel Merge Sort algorithm. This and similar visualizations
will let students see how the sequential and parallel versions of an
algorithm differ in behavior.

5.2. Guidelines for creating effective visualizations

To create our multithreaded visualizations, we have adopted
the following guidelines:

1. The visualization must work correctly using 1 or more
threads.

2. The visualization must be interactive, allowing one to change
the number of threads being used without recompiling.

3. Thevisualization must exhibit scalability — its behavior must
change as the number of threads is changed, in appearance
(e.g., see Figs. 7, and 10 versus 11) and where appropriate,
execution-time.

Each example described in Section 3 follows these guidelines,
allowing a student to explore the program’s behavior using dif-
fering numbers of threads and experience the result. TSGL's near
real-time graphics let a student actually see a scalable program run
faster as the number of threads is changed from 1to 2 to 3 to 4 to
...We have found that seeing a program run faster motivates many
students to quantify the speedup and calculate precisely how much
faster the program is running. TSGL appears to have great potential
for creating visualizations that let students viscerally experience
multithreaded behavior.

5.3. Testing and debugging

Visualizing an algorithm’s behavior provides an alternative
means of testing one’s code. As one example, the small brown
“meals” circles in Figs. 10 and 11 indicate that none of our dining
philosophers are starving using that particular strategy. By con-
trast, Fig. 12 shows how the use of a different strategy leads our
philosophers to a deadlocked state, and Fig. 13 shows how the use
of another strategy leads our philosophers to a livelocked state;
the lack of any “meals” dots in these executions show that no
philosopher has eaten, thus showing how these strategies lead to
starvation.

A second example occurred when we first implemented the in-
tegration example in 3.1.2. Integration is an inexact computation:
the precision of the result varies with the number of rectangles
being used, so our unit test checked that the area computed by our
function was computing the correct result plus or minus a certain
threshold. In our initial implementation, our for loop contained a
“off-by-one” logic error that caused it to use one more rectangle
than it should. This extra rectangle was very short so the area of this
extra rectangle was too small to exceed our unit test’s threshold,

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246 245

and our function still passed our unit test. When we added the
TSGL calls to visualize the algorithm’s operation, this “off-by-one”
error was immediately visible, as we could see the extra rectangle
being drawn. TSGL and visualization thus let us find and fix a logic
error that we were unable to detect via a unit test checking our
function’s return-value. Testing and debugging programs was not
a design goal of TSGL, but it appears to be a beneficial side effect of
visualization.

5.4. Controlling execution speed

In Section 2.1, we indicated that one of our design goals for
TSGL was to be able to slow down or delay a thread, if that was
desirable. For example, if run on the hardware in a typical laptop
without slowing the computation, each of the examples presented
in Section 3 will happen too quickly to be useful as instructional
examples:

1. In both the image-processing and the integration examples,
a single-threaded program will display the figure so quickly
that a student will be unable to see any differences between
it and any of the multithreaded versions.

2. In the Mandelbrot example, the figure will be displayed too
quickly for a student to see the need for load-balancing —
that the threads drawing the rows at the top and bottom of
the figure finish much faster than those drawing the middle
rows.

3. In the Dining Philosophers example, the philosophers will
go through their thinking-hungry-eating cycle too quickly
for a student to see the philosophers change from one state
to another.

For situations like this, TSGL lets the creator of a visualization
control the rate at which a visualization is drawn. More precisely,
each TSGL Canvas has a drawTimer instance variable, whose value
is used to delay the Canvas’s render-thread each of its draw-
cycles. The TSGL Canvas constructors each have a timerLength
parameter whose value is used to initialize this instance variable.
The timerLength parameter has a default argument of 0.0, so that
if no explicit argument is passed, the drawTimer is initialized to
0.0, the Canvas’s render-thread is delayed 0.0 s each draw-cycle,
and thus operates at its maximum possible speed. But the creator
of a visualization may pass an explicit value to this parameter to
delay the render-thread each of its draw-cycles. For convenience,
TSGL defines two global constants: FPS (frames per second) equal
to 60 and FRAME set to 1.0/FPS. By passing FRAME to the Canvas
constructor’s timerLength argument, the visualization’s frame-
rate can be set to 60 frames per second:

Canvas canvas(MAX_X, MAX_Y, FRAME);

By passing different values to the timerLength parameter, one
can control the frame rate at which a visualization displays.

The TSGL Canvas class also provides a sleep() method that
causes a thread executing it to delay until the Canvas’s render-
thread has completed its current draw-cycle. This can be used
to control the speed of a visualization’s threads. For example, to
slow the execution of the numerical integration example from
Section 3.1.2, we would invoke this sleep () method within the
for loop that draws the rectangles, as shown below:

heights = 0.0;

recWidth = (b-a) / NUM RECTANGLES;
halfRecWidth = recWidth / 2.0;
CartesianCanvas canvas (MAX X, MAX Y, FRAME);
canvas.showAxes () ;

canvas.drawFunction (f) ;

#pragma omp parallel reduction (+:heights)

{

threadID = getThreadID();

Color color = canvas.getMyColor (threadID);
#pragma omp for

for (1 = 0; 1 < NUM_RECTANGLES; i++) |

canvas.sleep() ;

xLo = a + 1 * recWidth;
xMid = xLo + halfRecWidth;
y = f(xMid);

canvas.drawRec (xLo, 0, xLo+recWidth, vy, color);
heights += y;
}
}
return heights * recWidth;

Since the #pragma omp for directive divides the iteration-
range of the for loop among the threads, the first thing the threads
will do upon entering the loop-body is sleep until the Canvas’s
render-thread has finished its current draw-cycle. When that hap-
pens, the threads will wake, compute and draw the first rectangle,
return to the top of the loop, and then sleep again. The effect is
thus to slow the threads’ executions, synchronizing them with the
render-thread’s draw-cycle. Since we can control the length of that
draw-cycle by passing an argument to the Canvas constructor’s
timerLength parameter, we can control the speed at which a
visualization runs.

As a second illustration, the following parallel version of the
Mandelbrot algorithm from Section 3.1.3 will cause each thread to
sleep when it computes a given row of the Mandelbrot figure:

Canvas canvas (MAX X, MAX Y, delay);
#pragma omp parallel for
for (y = 0; y < MAX Y; y++) {
canvas.sleep() ;
for (x = 0; x < MAX X; x++) {
Color color = mandelColor(x, Vv);

canvas.drawPoint (x, y, color);

By inserting a call to the Canvas’s sleep() method between
the two loops, a thread sleeps before it draws each row of the
Mandelbrot figure. Since this happens for each row, but the outer
rows take less time to draw than the center rows, this will slow the
visualization sufficiently for an observer to see the non-uniform
workloads of the threads.

To provide more fine-grained control, the Canvas class also
provides a sleepFor(seconds) method. This method causes the
thread that calls it to sleep for the specified number of (double
precision) seconds, regardless of the value of the Canvas’s draw-
Timer member, thus delaying a thread independently of the visu-
alization’s draw cycle.

For more information about using TSGL, we encourage the
reader to consult the tutorials that are available at the TSGL web-
site [4].

246
6. Conclusions

To extend the adage “A picture is worth 1000 words”, we believe
that an effective way to teach students about parallelism is to take
a working multithreaded program and augment it with graphical
calls that show what each thread is doing, to create an interactive
visualization of the program’s parallel behavior. The behavior of
such visualizations appears to help the students build mental mod-
els of the underlying parallelism, and the interactivity lets them
explore and alter that parallel behavior, improving their mastery
of abstract parallel concepts.

To help ourselves and others create such visualizations, we have
built the thread-safe graphics library (TSGL). TSGL is an object-
oriented library whereby C++11, POSIX, and/or OpenMP threads
can safely draw on one or more common Canvas object, and one
can see the results in near real-time.

To illustrate the use of TSGL, we have presented several ex-
amples, including image processing, numerical integration, the
Mandelbrot Set, and the Dining Philosophers Problem. We have
also described others that are currently under construction.

We have presented evidence that the use of a TSGL visualization
improved student understanding of the precise behavior used by
the Parallel Loop pattern. By helping students build mental models
of parallel behavior, we believe that TSGL visualizations hold great
potential to help students understand abstract concepts, whether
parallel or sequential.

Finally, we have discussed different ways TSGL can be used,
including the unexpected discovery that visualization can aid test-
ing and debugging. We also presented our guidelines for creating
multithreaded visualizations: they should be correct, interactive,
and scalable, so that students can see how the behavior of the
parallel algorithm changes as they vary the number of threads.

For those who would like to try it, the current release of TSGL
may be freely downloaded from GitHub (see [4]) under the GNU
Public License (v. 3). It was developed on Ubuntu Linux 14.0.4
and has been successfully tested on both MacOS X Yosemite and
Windows 7. The project’s Github site includes installation instruc-
tions, nine tutorials on how to use the library, and its API. We look
forward to seeing the new and exciting visualizations that others
will create using TSGL.

Acknowledgments

We wish to thank the National Science Foundation, whose
support through grant DUE-1225739 made TSGL possible; our
collaborators on the CSinParallel project [6], who have provided
valuable feedback during the development of TSGL; and the re-
viewers of initial drafts of this paper, whose feedback significantly
strengthened it.

References

[1] J. Adams, Injecting parallel computing into CS2, in: Proc. 45th SIGCSE Tech.
Symposium on Computer Science Education, Mar. 2014, pp. 277-282. http:
//dx.doi.org/10.1145/2538862.2538883.

[2]]J. Adams, Patternlets: A teaching tool for introducing students to parallelism,
J. Parallel Distrib. Comput. 105 (2017) 31-41. http://dx.doi.org/10.1016/j.jpdc.
2017.01.008.

[3] J. Adams, R. Brown, E. Shoop, Patterns and exemplars: Compelling strategies
for teaching parallel and distributed computing to CS undergraduates, in:
EduPar-13, 27th IEEE International Parallel and Distributed Processing Sym-

(4]

5

6

(7

8

[9

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

J.C. Adams et al. /. Parallel Distrib. Comput. 118 (2018) 233-246

posium, Boston, MA, May 2013, pp. 1244-1251. http://dx.doi.org/10.1109/
IPDPSW.2013.275.

J. Adams, P. Crain, C. Dilley, M. VanderStel, TSGL. Online: github.com/Calvin-
CS/TSGL (Accessed 12.06.17).

S. Bogaerts, Hands-on exploration of parallelism for absolute beginners with
scratch, in: EduPar Workshop, Proc. 27th IEEE International Parallel and Dis-
tributed Processing Symposium, [PDPSW 2013, May 2013, p. 1263. http://dx.
doi.org/10.1109/IPDPSW.2013.63.

R. Brown, E. Shoop, J. Adams, S. Matthews, CSinParallel: Parallel Comput-
ing in the Computer Science Curriculum. Online: csinparallel.org (Accessed
12.06.17).

E. Fouh, M. Akbar, C. Shaffer, The role of visualization in computer science
education, Comput. Schools: Interdiscip.]. Pract. Theory Appl. Res. 29 (2012)
95-117. http://dx.doi.org/10.1080/07380569.2012.651422.

D. Garcia, et al. Beauty and Joy of Computing Curriculum: Concurrency. On-
line: http://bjc.berkeley.edu/bjc-r/topic/topic.html?topic=berkeley_bjc/areas/
concurrency.topic (Accessed 30.11.17).

Intel Corp. Intel Xeon Phi Processors. Online: www.intel.com/content/www/
us/en/products/processors/xeon-phi/xeon-phi-processors.html

(Accessed 12.06.17).

Intel Corp. Intel Xeon Processors. Online: www.intel.com/content/www/us/
en/products/processors/xeon.html (Accessed 12.06.17).

C. Kehoe,]. Stasko, A. Taylor, Rethinking the evaluation of algorithm anima-
tions as learning aids, Int. J. Hum.-Comput. Stud. 2 (54) (2001) 265-284. http:
//dx.doi.org/10.1006/ijhc.2000.0409.

K. Keutzer, B.L. Massingill, T.G. Mattson, B.A. Sanders, A design pattern lan-
guage for engineering (parallel) software: merging the PLPP and OPL projects,
in: Proceedings of the 2010 Workshop on Parallel Programming Patterns, New
York, NY, USA, 2010, pp. 9:1-9:8.

K. Keutzer, T. Mattson, Our pattern language (OPL): A design pattern language
for engineering (parallel) software, in: ParaPLoP Workshop on Parallel Pro-
gramming Patterns, 2009.

S. Massung, C. Heeren, Visualizing parallelism in CS2, in: Third NSF/TCPP
Workshop on Parallel and Distributed Computing Education, EduPar-13, May
2013. Online: grid.cs.gsu.edu/~tcpp/curriculum/sites/default/files/Visualizing
ParallelisminCS2_0.pdf (Accessed 12.06.17).

T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming,
Pearson Education, 2005.

T. Naps, G. Rosling, V. Alstrum, W. Dann, R. Fleischer, C. Hundhausen, A.
Korhonen, L. Malmi, M. McNally, S. Rodger,]. Valezquez-Iturbide, Exploring
the role of visualization and engagement in computer science education,
ACM SIGCSE Bull. 35 (2) (2003) 131-152. http://dx.doi.org/10.1145/782941.
782998.

S.K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta,]. Jaja, K. Kant, A.
La Salle, R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert,
A.Rosenberg, S. Sahni, B. Shirazi, A. Sussman, C. Weems, J. Wu, NSF/IEEE-TCPP
Curriculum Initiative on Parallel and Distributed Computing - Core Topics for
Undergraduates, Version I, Online: http://www.cs.gsu.edu/~tcpp/curriculum/
index.php, 2012, p. 55.

M. Sahami, et al., “Computer Science Curricula 2013,” http://dx.doi.org/
10.1145/2534860. Online: www.acm.org/education/CS2013-final-report.pdf
(Accessed 12.06.17).

C. Shaffer, M. Cooper, A. Alon, M. Akbar, M. Stewart, S. Ponce, S. Edwards,
Algorithm Visualization: The State of the Field, ACM Trans. Comput. Educ.
10 (3) (2010). http://dx.doi.org/10.1145/1821996.1821997. Article no. 9.
S.Torbet, U. Vishkin, R. Tzur, D. Ellison, Is teaching parallel algorithmic thinking
to high school students possible? one teacher’s experience, in: Proc. 41st
ACM Technical Symposium on Computer Science Education, March 2010,
pp. 290-294. http://dx.doi.org/10.1145/1734263.1734363.

Joel C. Adams is professor and Chair of the Department
of Computer Science at Calvin College. He has been teach-
ing his students about parallel and distributed computing
since 1997. He has designed four Beowulf clusters includ-
ing Microwulf, the first cluster to break the $100/GFLOP
barrier. He is one of the PIs on CSinParallel.org, an NSF-
funded project to create and distribute high quality ped-
agogical materials for teaching students about parallel
and distributed computing. He is a two-time Fulbright
scholar (Mauritius, 1998; Iceland, 2005) and is an ACM
Distinguished Educator.

http://dx.doi.org/10.1145/2538862.2538883
http://dx.doi.org/10.1145/2538862.2538883
http://dx.doi.org/10.1145/2538862.2538883
http://dx.doi.org/10.1016/j.jpdc.2017.01.008
http://dx.doi.org/10.1016/j.jpdc.2017.01.008
http://dx.doi.org/10.1016/j.jpdc.2017.01.008
http://dx.doi.org/10.1109/IPDPSW.2013.275
http://dx.doi.org/10.1109/IPDPSW.2013.275
http://dx.doi.org/10.1109/IPDPSW.2013.275
https://github.com/Calvin-CS/TSGL
https://github.com/Calvin-CS/TSGL
https://github.com/Calvin-CS/TSGL
http://dx.doi.org/10.1109/IPDPSW.2013.63
http://dx.doi.org/10.1109/IPDPSW.2013.63
http://dx.doi.org/10.1109/IPDPSW.2013.63
https://csinparallel.org
http://dx.doi.org/10.1080/07380569.2012.651422
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://bjc.berkeley.edu/bjc-r/topic/topic.html%3Ftopic%3Dberkeley_bjc/areas/concurrency.topic
http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://www.intel.com/content/www/us/en/products/processors/xeon.html
http://www.intel.com/content/www/us/en/products/processors/xeon.html
http://www.intel.com/content/www/us/en/products/processors/xeon.html
http://dx.doi.org/10.1006/ijhc.2000.0409
http://dx.doi.org/10.1006/ijhc.2000.0409
http://dx.doi.org/10.1006/ijhc.2000.0409
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
https://grid.cs.gsu.edu/%7Etcpp/curriculum/sites/default/files/VisualizingParallelisminCS2_0.pdf
http://refhub.elsevier.com/S0743-7315(18)30103-5/sb15
http://refhub.elsevier.com/S0743-7315(18)30103-5/sb15
http://refhub.elsevier.com/S0743-7315(18)30103-5/sb15
http://dx.doi.org/10.1145/782941.782998
http://dx.doi.org/10.1145/782941.782998
http://dx.doi.org/10.1145/782941.782998
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
http://www.acm.org/education/CS2013-final-report.pdf
http://dx.doi.org/10.1145/1821996.1821997
http://dx.doi.org/10.1145/1734263.1734363
http://csinparallel.org

	TSGL: A tool for visualizing multithreaded behavior
	Introduction
	TSGL
	TSGL design goals
	TSGL design
	TSGL implementation issues

	Examples
	The Parallel Loop pattern
	Image processing: a balanced-load Parallel Loop
	Numerical integration: a different balanced-load Parallel Loop
	The Mandelbrot set: an imbalanced-load Parallel Loop

	The actor pattern and synchronizing accesses to shared resources

	Assessment
	Discussion
	Visualizing other parallel patterns
	Guidelines for creating effective visualizations
	Testing and debugging
	Controlling execution speed

	Conclusions
	Acknowledgments
	References

