
pplacerDC: a New Scalable Phylogenetic Placement Method
Elizabeth Koning
ekoning2@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

Malachi Phillips
malachi2@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

Tandy Warnow
warnow@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, Illinois, USA

ABSTRACT
Motivation: Phylogenetic placement (i.e., the insertion of a se-
quence into a phylogenetic tree) is a basic step in several bioinfor-
matics pipelines, including taxon identification in metagenomic
analysis and large scale phylogeny estimation. The most accurate
current method is pplacer, which attempts to optimize the place-
ment using maximum likelihood, but it frequently fails on datasets
where the phylogenetic tree has 5000 leaves. APPLES is the current
most scalable method, and EPA-ng, although more scalable than
pplacer and more accurate than APPLES, also fails on many 50,000-
taxon trees. Here we describe pplacerDC, a divide-and-conquer
approach that enables pplacer to be used when the phylogenetic
tree is very large.
Results: Our study shows that pplacerDC has excellent accuracy
and scalability, matching pplacer where pplacer can run, improving
accuracy compared to APPLES and EPA-ng, and is able to run on
datasets with up to 100,000 sequences.
Availability: The pplacerDC code is available on GitHub at
https://github.com/kodingkoning/pplacerDC.

CCS CONCEPTS
• Applied computing→ Life and medical sciences.

KEYWORDS
phylogenetic placement, pplacer

ACM Reference Format:
Elizabeth Koning, Malachi Phillips, and Tandy Warnow. 2021. pplacerDC: a
New Scalable Phylogenetic Placement Method. In 12th ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics
(BCB ’21), August 1–4, 2021, Gainesville, FL, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3459930.3469516

1 INTRODUCTION
Phylogenetic placement (the addition of a sequence into a “back-
bone" phylogenetic tree) is a basic step in many bioinformatics
pipelines, including large-scale phylogenetic tree construction [1]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BCB ’21, August 1–4, 2021, Gainesville, FL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8450-6/21/08. . . $15.00
https://doi.org/10.1145/3459930.3469516

and taxon identification of microbial reads (e.g., providing an esti-
mate of the taxonomic characterization of a read from a metage-
nomic sample, as performed in TIPP [12]). In both of these cases,
the backbone tree is generally large and the number of sequences
that need to be added may also be very large; hence, phylogenetic
placement methods that can operate efficiently and with high accu-
racy given large backbone trees and numbers of query sequences
is important.

Several methods have been developed for phylogenetic place-
ment, including pplacer [8], EPA-ng [2], APPLES [1], RAPPAS [6],
and App-SpaM [3]. Of these, pplacer and EPA-ng are based on max-
imum likelihood (i.e., they find the placement in the tree where the
extended alignment/tree pair has the largest maximum likelihood
score among all possible placements), while the other methods
are based on distances. As a result, pplacer and EPA-ng are more
computationally intensive than the other methods. Several studies
have shown that pplacer and EPA-ng tend to have better accuracy
than the distance-based methods, with pplacer having an accuracy
advantage over EPA-ng [1, 3, 6]. However, pplacer and EPA-ng are
limited to smaller backbone trees (pplacer frequently fails on 5000-
leaf backbone trees and EPA-ng fails on 50,000-leaf backbone trees),
whereas APPLES can work with much larger backbone trees (e.g.,
100,000 leaves). Given the planned use of phylogenetic placement
methods (which is to add query sequences into large trees), this
substantially limits the utility of these likelihood-based placement
methods.

Here we present a new phylogenetic placement method that
achieves the scalability of APPLES and has much better accuracy
than APPLES. The method, which we call pplacerDC, operates
by dividing the backbone tree into disjoint subsets that are small
enough for pplacer, thus producing a set of disjoint (but smaller)
backbone trees. It then uses pplacer to place each query sequence
into each of the smaller backbone trees; naturally, this also indicates
a position within the original backbone tree. The set of placements
can then be compared for likelihood scores, and the best placement
returned. By design, pplacerDC matches the accuracy of pplacer
on all datasets on which pplacer can run, and is easily parallelized.
Most importantly, pplacerDC is more accurate than both EPA-ng
and APPLES, and can place into 100,000-taxon trees. Thus, although
pplacerDC is slower than APPLES, it provides accuracy advantages
and excellent scalability, and represents an advance in phylogenetic
placement methodology.

2 APPROACH
The input to many phylogenetic placement methods is a backbone
tree𝑇 with leafsetL and an alignment𝐴 of the sequences inL∪{𝑥},
where 𝑥 is a query sequence. Most phylogenetic placement methods
also require some numeric parameters (e.g., branch lengths), and

https://doi.org/10.1145/3459930.3469516
https://doi.org/10.1145/3459930.3469516

BCB ’21, August 1–4, 2021, Gainesville, FL, USA Koning, Phillips, and Warnow

some require them in particular formats. In particular, pplacer and
pplacerDC require numeric parameters that are produced using
RAxML7 [14], and EPA-ng required numeric parameters produced
by RAxML8 [15]. RAxML is a program using maximum likelihood
to analyse phylogenies, and one of its features is the estimation
of model parameters from an alignment. The output of each phy-
logenetic placement method is the backbone tree with the query
sequence placed.

We have designed a divide-and-conquer version of pplacer, which
we call pplacerDC. A schematic of the pipeline for pplacerDC is
shown in Figure 1, and pseudocode for pplacerDC is shown in
Algorithm 1. Note that the input to pplacerDC is nearly the same
as the input for pplacer, with the addition of an option to specify
the maximum size of the subtrees in the decomposition step.

The first step of pplacerDC is to decompose the backbone tree
into subsets. To achieve this, pplacerDC uses the same decomposi-
tion as used in PASTA [9], which operates as follows: pplacerDC
finds a centroid edge in the backbone tree (i.e., an edge whose re-
moval separates the leaf set into two subtrees of approximately
equal size). The decomposition is recursively applied to each sub-
tree until each subset is small enough, which is determined by a
parameter value selected by the user. (This centroid decomposi-
tion is also the same decomposition used in SATé-2 [7], TIPP [12],
and SEPP [10]). For the pplacerDC setting, we ensure that the sub-
sets are small enough that pplacer can successfully place query
sequences into subtrees of that size. Given the prior trends about
pplacer failures established in [1], pplacer reliably places on trees
with 1000 sequences, but frequently fails for 5000-sequence trees.

After dividing the tree into disjoint subset trees, pplacerDC op-
erates as follows. First, pplacerDC uses pplacer independently on
each of the subtrees to determine the best query placement for
that subtree. Each tentative query placement is then grafted onto
the original backbone tree, yielding a candidate resultant tree and
placement. Note that the input also contains an alignment that
includes the sequences at the leaves of the backbone tree and the
query sequence; hence, this procedure produces an alignment/tree
pair for each of the subsets produced by the decomposition.

RAxML-ng [5] is then used to score each alignment/tree pair
with respect to maximum likelihood. The placement position with
the largest log-likelihood score is returned by pplacerDC. Note that
each tree given to RAxML-ng to score contains the placement posi-
tion for the added sequence and has all the GTRGAMMA numeric
parameters (i.e., branch lengths, 4x4 substitution matrix, gamma
shape parameter, stationary distribution for the nucleotides) al-
ready defined. Hence, RAxML-ng can score the tree without trying
to optimize the numeric parameters; this simplifies the problem and
enables RAxML-ng to be reasonably efficient. We use the following
command for the RAxML-ng scoring:

raxml-ng –msa referenceAln –model GTR+G –tree
treeFile –threads threads –opt-branches off
–opt-model off –evaluate –nofiles –log result

We prototyped this approach using Python, with substantial
reliance on the Dendropy library [16]. As Dendropy is not designed
for large datasets and is instead focused on easy prototyping, our
goal was to evaluate whether this approach provided good accu-
racy more than running time or memory usage, especially on large
datasets. In order to be applicable in either a shared or distributed

Algorithm 1: Divide-and-conquer pplacer
Result: 𝑇 ′, tree T with query sequence 𝑞 added
Input: Tree 𝑇 on 𝑁 sequences, the MSA of 𝑁 + 1 sequences,

and query sequence 𝑞
// centroidDecomposition decomposes a tree into roughly
equal size, disjoint parts until the trees are no larger than
the prescribed size.;

// modifyTree adds sequence to a tree based on the
sequence’s location in the a subtree with the sequence
added;
{𝑇1, . . . ,𝑇𝑛} ← centroidDecomposition(𝑇, maxSize);
{𝑆1, . . . , 𝑆𝑛} ← 0 // Score for each tree;
parallel for 𝑖 = 1, . . . , 𝑛 do

// Place query sequence 𝑞 into the subtree;
𝑇 ′
𝑖
← pplacer(𝑇𝑖 , 𝑞);

// Add the location of the query sequence 𝑞 to a copy of
𝑇 ;
𝑇𝑞𝑖 ← modifyTree(𝑇,𝑇 ′

𝑖
, 𝑞);

// RAxMLScorer runs RAxML in fixed tree mode.;
// The output score is the maximum likelihood found on
the tree.;

𝑆𝑖 ← RAxMLScorer(𝑇𝑞𝑖);
endfor
// Do a maxLoc reduction for the tree;
𝑏𝑒𝑠𝑡𝑇𝑟𝑒𝑒𝐼𝑛𝑑𝑒𝑥 ← argmax𝑖 (𝑆1, . . . , 𝑆𝑛);
return 𝑇 ′𝑞𝑏𝑒𝑠𝑡𝑇𝑟𝑒𝑒𝐼𝑛𝑑𝑒𝑥

;

memory context, two versions of pplacerDC are implemented in
Python. The first is tailored to running on shared memory machines
using Python’s native thread pool paradigm. The second is written
using the message passing interface (MPI) standard bindings imple-
mented in mpi4py and is tailored for distributed memory machines
[4].

3 EXPERIMENTAL EVALUATION
3.1 Methods
To run pplacerDC, we specify the maximum number of leaves in
each of the subtrees it uses to be 2500; this means that it decom-
poses the backbone trees by deleting centroid edges until each
subtree has at most 2500 leaves. We compare pplacerDC to APPLES
and EPA-ng; however, we do not compare pplacer to pplacerDC,
because the two methods are equal when pplacer can run. We se-
lected APPLES for an example of a scalable and fast phylogenetic
placement method and EPA-ng as the leading alternative to pplacer
for accuracy, while being more scalable than pplacer. Our goal is to
achieve the scalability of APPLES but improve on the accuracy of
EPA-ng.

3.2 Experiments
We use the same experimental protocol as [1] to evaluate phylo-
genetic placement methods for scalability and accuracy on large
datasets.We use the RNASim-VS (variable size subsets of the RNASim
dataset) with 1K to 100K sequences; these datasets were sampled

pplacerDC: a New Scalable Phylogenetic Placement Method BCB ’21, August 1–4, 2021, Gainesville, FL, USA

Figure 1: The pplacerDC pipeline. The input to pplacerDC is a set of aligned sequences, a backbone tree (with branch lengths),
and a query sequence. The set of aligned sequences includes the sequences at the leaves of the backbone tree and the query
sequence being placed into the tree. In Step 1, pplacerDC splits the tree into subtrees; in Step 2, it uses pplacer to place the
query sequence into each of the subtrees; and in Step 3, it uses RAxML to compute the maximum likelihood score of these
placements within the full backbone trees. The best of these placements (according to ML score) is then returned.

randomly from the RNASim data set described in [9]. Briefly, the
RNASim simulation (described in detail in the supplementary ma-
terials for [9]) reflects the selective pressures that occur in order
to maintain the secondary structure of the molecule. The fixation
probability of a mutation (whether of indels or substitutions) is
computed by a function of the folded free energy of the resulting
RNA sequence. The RNASim simulation has varying rates across
sites, which also reflects the properties of RNA sequence evolution.

Because the RNASim datasets are simulated, they have true trees
and true sequence alignments, which allow us to exactly quantify
error in estimated trees before and after placement. We have five
replicates for each number of sequences, ranging among 1K, 5K,
10K, and 100K.

• Experiment 1: We compared different subtree sizes for pplac-
erDC to optimize the accuracy.
• Experiment 2: We compared pplacerDC to the leading al-
ternative methods, APPLES and EPA-ng, with respect to
accuracy of the placement.
• Experiment 3: We compared pplacerDC to APPLES and EPA-
ng with respect to running time and scalability.

As in [1], we used a leave-one-out strategy for the tests. Out
of the set of sequences in the tree, 200 sequences are selected as
query sequences. For each of the query sequences, the leave-one-
out strategy starts with the true tree, 𝑇 , and removes the sequence

from 𝑇 , creating 𝑇 ′. Then, the placement software adds that query
to 𝑇 ′ to obtain the estimated placement.

3.3 Backbone trees
For the backbone trees, we use trees estimated on the true alignment.
We use FastTree2 [13], a maximum likelihood heuristic, for these
analyses. This selection is also the same as the experimental design
used in [1].

Each of the phylogenetic placement methods requires the back-
bone tree to be provided with branch lengths, but are optimized
for different branch length calculations. We follow the protocol
described in [1] for the branch length estimation for APPLES and
EPA-ng on the RNASim-VS datasets. For APPLES, we used the
branch lengths estimated by FastTreeMP. For EPA-ng, we used
branch lengths from RAxML version 8 and required the RAxML8
info file [15]. For pplacerDC, we used used branch lengths estimated
by RAxML version 7.2.6, and provide these when we pass the sub-
trees to pplacer, which requires an info file generated by RAxML7.
All estimated tree topologies and branch lengths we used are from
[1], with the exception of the RAxML7 branch lengths for two of
the 100,000 replicates. Due to multiple identical sequences, RAxML
failed. RAxML was rerun after removing the duplicate sequences.

BCB ’21, August 1–4, 2021, Gainesville, FL, USA Koning, Phillips, and Warnow

3.4 Error Assessment
We compared pplacerDC to pplacer, EPA-ng, and APPLES for accu-
racy, runtime, and memory usage. To enable a direct comparison
to the results reported in [1], we use the same technique for quan-
tifying placement error, called the “delta error", and which we now
define. Each edge in a tree𝑇 with leafset L defines a bipartition on
L, and so each tree 𝑇 can be defined by its set 𝐵(𝑇) of bipartitions.
Given the true tree 𝑇 ∗, the False Negatives in an estimated tree
are those bipartitions in the true tree that are missing from the
estimated tree. Based on this definition of false negatives, the delta
error is the increase in the number of false negatives produced by
adding a query sequence into a backbone tree (and note that the
delta error, denoted Δe, is always non-negative). We formalize this
as follows:

Δ𝑒 (𝑃) = |𝐵(𝑇 ∗)\𝐵(𝑃) | − |𝐵(𝑇 ∗ ↾L)\𝐵(𝑇) |,

where L denotes the leafset, 𝑃 denotes the tree after placement,
𝑇 ∗ denotes the true tree on L ∪ {𝑞}, and 𝑇 ∗ ↾L denotes the true
tree restricted to L. (Note that when the computed tree and the
true tree are both fully resolved (i.e., when every internal node in
the unrooted tree has degree 3) then the increase in the number of
false negatives is the same as the increase in the number of false
positives.)

Computational infrastructure. We performed the analysis on
NCSA’s Campus Cluster on Dell C8220 compute sleds. Each has
two Intel E5-2670V2 (Ivy Bridge) processors. The Campus Cluster is
a heterogeneous system, so that each sled has a minimum of 64GB
RAM, and some have 128GB or 256GB RAM.

4 RESULTS
4.1 Experiment 1: Subtree Size

1000 2000 2500 3000
pplacerDC 0.159 0.156 0.146 0.148

Table 1: Delta Error (Δ𝑒) for RNASim-VS with trees of 10,000
taxa where the maximum size of the subtrees varies. We
show the average Δ𝑒, across all query sequences and repli-
cates; the best result for each criteria is boldfaced. There are
five replicate trees for the backbone size 10,000 placing 200
queries each.

In order to select a suitable maximum size for the subtrees used
by pplacerDC, we ran pplacerDC with varying subtree sizes on
trees of 10,000 taxa. The maximum subtree sizes tested were 1000,
2000, 2500, and 3000, and the results are shown in Table 1 and Figure
2.

The lowest average delta error occurs at maximum subset size
2500, but the differences between the highest and lowest average
delta error among these tested values is not large. In addition, for
each of the tested settings for the maximum subtree size, the major-
ity of placements had 0% delta error, and even more are only one
branch away from the optimal placement. In the case of maximum

Figure 2: Delta error as a function of the maximum subtree
size using pplacerDC on the RNASim-VS datasets. Error is
averaged across single query placements, using an estimated
backbone tree for 200 leave-one-out queries on each of five
replicates on trees of 10,000 taxa.

subtree sizes 1000 and 2000, there were one and two placements
with much higher error, but these outlier values only changed the
average delta error by a small amount.

For the experiments comparing pplacerDC to the other methods,
we used subtrees of size 2500, as it minimized the average delta
error.

4.2 Experiment 2: Evaluating accuracy

n = 1000 n = 5000 n = 10000 n = 100000
% Δe % Δe % Δe % Δe

pplacerDC 81 0.20 86 0.15 86 0.15 91 0.15
EPA-ng 73 0.30 78 0.24 79 0.22 - -
APPLES 71 0.43 77 0.37 79 0.33 84 0.25

Table 2: Delta Error (Δ𝑒) for RNASim-VS, where the num-
ber of taxa (n) in the tree varies. We show the percentage of
placements that produce Δ𝑒 = 0 and the average Δ𝑒, across
all query sequences and replicates; the best result for each
model condition is boldfaced. There are five replicate trees
for every backbone size 𝑛, and 200 queries for each repli-
cate. Results are not shown for pplacer, since it is identical to
pplacerDC on 1000-taxon backbone trees and fails on many
large backbone trees. Dashes for EPA-ng for 100,000-taxon
backbone trees are shown, since it fails onmany placements
on backbone trees of 100,000 leaves according to [1].

Results on the data sets with 1000 or more sequences are shown
below in Figure 3. Although pplacer results are not shown, pplacer
is identical to pplacerDC on 1000-taxon backbone trees, and so
its performance on 1000-taxon backbones can be inferred from

pplacerDC: a New Scalable Phylogenetic Placement Method BCB ’21, August 1–4, 2021, Gainesville, FL, USA

Figure 3: Delta error as a function of the size of the backbone
tree on the RNASim-VS datasets. Error is averaged across
single query placements, using an estimated backbone tree
for 200 leave-one-out queries on each of five replicates (a to-
tal of 1000 queries for each backbone tree size). Balaban et
al. [1] found that EPA-ng fails on some placements on trees
of 50,000 or more taxa, so EPA-ng is omitted for the 100,000-
taxon backbone trees.

the figure. However, we do not show pplacer results on the larger
datasets, because it fails frequently on 5000-taxon backbone trees
and does not run on larger datasets, as reported in [1] and also
confirmed in this study.

For all backbone tree sizes, pplacerDC has the best accuracy,
followed by EPA-ng, and then by APPLES. Furthermore, APPLES
has more than twice the delta error of pplacerDC at the smaller
backbone trees (up to 10,000 leaves) and still 1.6 times the error
on the larger trees. We also observe that EPA-ng cannot complete
some analyses on the 50,000-taxon backbone trees (hence results on
50,000-taxon backbone trees are not shown), but that both APPLES
and pplacerDC complete on all the backbone trees. Interestingly,
error rates drop as the size of the backbone trees increase from 1000
to 100,000, and this trend holds for both APPLES and pplacerDC.

We also show the percentage of times each phylogenetic place-
ment method has Δ𝑒 = 0 in Table 2. Here too we see pplacerDC
improving relative to both EPA-ng and APPLES throughout this
range of backbone tree sizes. Interestingly, APPLES and EPA-ng
are close with respect to this criterion, and identical for the 10,000-
taxon backbone trees. (Note that our Table 2 matches results for
APPLES and EPA-ng reported in Table 3 of [1]).

4.3 Experiment 3: Evaluating computational
scalability

Herewe report the average (across query sequences) for the runtime
and peak memory usage for each method. We report results for
pplacer only on the 1000-taxon backbone trees, since it fails on
many of the 5000-taxon backbone trees, and similarly we do not

Figure 4: Runtime as a function of the backbone tree size,
using 16 threads for trees of 1000-10,000 taxa and 3 threads
for the trees of 100,000 taxa due to memory requirements.
We report the average time to place a single query sequence,
using an estimated backbone tree, for 200 leave-one-out
queries on each of five replicates for a total of 1000 queries
for each number of taxa. pplacer failed on many trees of
5000 taxa and so is not included for any trees larger than
1000 taxa. Balaban et al. [1] found that EPA-ng fails on some
placements on trees of 50,000 or more taxa, so EPA-ng is
omitted for the 100,000-taxon backbone trees.

report results for EPA-ng for backbone trees larger than 10,000
leaves.

As seen in Figure 4, APPLES is by far the fastest method, with
a substantial improvement over EPA-ng and pplacerDC. The com-
parison between EPA-ng reveals that EPA-ng is faster than both
pplacer and pplacerDC at 1000-taxon backbone trees, and then
slower than pplacerDC for 5000 and 10,000-taxon backbone trees;
however, EPA-ng does not run on the largest backbone trees. Peak
memory usage for the different methods is shown in Figure 5. EPA-
ng has the highest peak memory usage, followed by pplacerDC,
and then by APPLES.

A focused evaluation of the running time of each step is provided
in Figure 6. The left subfigure shows the breakdown by step for
10,000-taxon backbone trees, and the right subfigure shows the
breakdown for 100,000-taxon backbone trees. For the smaller back-
bone tree size (10,000-taxon backbone trees), the vast majority of
the time is spent in Step 2 (pplacer analyses on subset trees), and the
other steps all use about the same amount of time. On the largest
backbone trees we examined (with 100,000 leaves), the total amount
of time goes up, but the proportions also change. Specifically, now
Step 1 becomes the smallest part, Step 2 uses significant time, and
Step 3 uses about 2/3 of the entire time. Furthermore, both Steps
3a and Step 3b are computationally expensive, and more expensive
than Step 2, and Step 3b is more expensive than Step 3a. Thus, the
most expensive part of the pipeline on large datasets is Step 3b,
where RAxML is used to compute the maximum likelihood score

BCB ’21, August 1–4, 2021, Gainesville, FL, USA Koning, Phillips, and Warnow

Figure 5: Maximum memory usage on 16 threads. We re-
port average peak memory usage to place a single query
sequence using an estimated backbone tree for 200 leave-
one-out queries on each of five replicates, for a total of 1000
queries for each number of taxa. pplacer failed on all trees
of 5000 taxa and so is not included for any trees larger than
1000 taxa. [1] found that EPA-ng fails on some placements
on trees of 50,000 or more taxa, so EPA-ng is omitted for the
100,000-taxon backbone trees.

of the competing trees, but Step 3a, which relies on Dendropy, is
also computationally intensive.

5 DISCUSSION
We followed the protocol used in [1], using RNASim-VS (simulated
datasets with backbone trees having 1000 to 100,000 sequences) in
order to evaluate pplacer DC in comparison to EPA-ng, APPLES,
and pplacer with respect to placement accuracy and computational
resource (time and peak memory) usage. Our study confirms results
obtained in [1] for the other methods, and shows that pplacerDC
improves on both APPLES and EPA-ng for accuracy, and is able to
analyze datasets with backbone trees having up to 100,000 leaves.

The running time and peak memory usage also shows that pplac-
erDC is more efficient than EPA-ng, but far less efficient than AP-
PLES. The pplacerDC implementation we used, however, is based
on Python and relies on Dendropy, and is thus research grade code.
Clearly a more careful implementation will be needed for pplac-
erDC to be able to scale to larger datasets.

A consideration of the computational effort reveals different
issues for the different steps. In the first step, we divide the backbone
tree into subsets; this is fast and uses very little memory. In the
second step, we use pplacer to place each query sequence into each
subset tree; each of these placements will use (roughly) the same
amount of time, since each subset tree is of bounded size. Also,
this step is embarrassingly parallelizable (since each subtree can be
analyzed independently). Hence, given sufficient infrastructure, this
is feasible even for very large backbone trees. The last step of the
pplacerDC pipeline, however, requires that we compare different

Figure 6: Runtime for pplacerDC by step (Left subfigure for
10,000-taxon backbone trees using 16 threads, Right subfig-
ure for 100,000-taxon backbone trees using 3 threads). Step
1 is decomposing the backbone tree and preparing input
FASTA files for pplacer. Step 2 is running pplacer on each
of the subtrees and placing the query in each subtree. Step
3a modifies the main tree to include the query sequence of
the predicted placement, and Step 3busesRAxML-ng to com-
pute the likelihood score (based on the given branch lengths
and substitution rate matrix) of the resultant trees. We re-
port the average time to place a single query sequence, using
an estimated backbone tree, for 200 leave-one-out queries
on each of five replicates for a total of 1000 queries for
each number of taxa. On 10,000-taxon backbone trees, Step 2
(pplacer analyses) use the majority of the time. However, on
100,000-taxon backbone trees, Step 3 uses themajority of the
runtime, with Step 3b using more time than Step 3a. Times
shown here are also provided in Table 3 in the appendix.

placements in the backbone tree with respect to the maximum
likelihood criterion, using RAxML. Note that this is a potentially
large number of different trees that need to be compared (i.e., one for
every subset tree computed in the decomposition). Therefore, Step
1 should be very fast and scale linearly with the number of leaves
in the backbone; Step 2 will require significant time, but parallelism
should allow this to scale linearly with the number of leaves in the
backbone; and Step 3 will be fast on small to moderate backbone
trees, but then possibly become infeasible on very large backbone
trees because of running time and memory issues involved in using
RAxML to score the different trees. Furthermore, there is even a
potential for reduced accuracy on the very largest trees, if numerical
issues in scoring large trees arise.

This prediction is consistent with results shown in Figure 6,
which shows the running time breakdown by step, for 10,000-taxon
backbone trees (left subfigure) and then for 100,000-taxon back-
bone trees (right subfigure). For the smaller backbone tree size, the
majority of the effort is used by Step 2 (pplacer analyses on subset
trees), but for the larger backbone trees, the majority of the effort

pplacerDC: a New Scalable Phylogenetic Placement Method BCB ’21, August 1–4, 2021, Gainesville, FL, USA

is spent in Step 3, with Step 3b (which is where RAxML is used to
score the different trees) the largest part of the effort.

The differences between the running times on 10,000- and 100,000-
taxon backbone trees are due to a combination of changes in the
number of threads used, the number of placements proposed and
assessed, and the cost of a single placement in each step. Between
10,000 taxa and 100,000 taxa, Step 2’s time increases by a combina-
tion of using 3 threads instead of 16 threads (to avoid out-of-memory
errors in Step 3) and the number of subtrees increasing by a factor
of 10. As Step 2 uses pplacer to place into trees of constant size
regardless of the overall number of taxa, the time required for Step
2 is a linear function of the number of leaves. However, both Step
3a and 3b (and Step 3b in particular) increase by a larger factor
when the number of leaves increases from 10,000 to 100,000, and
there is a straightforward explanation. Recall that Step 3b requires
the use of RAxML to score each of the trees on the full set of leaves;
the number of these trees is the total number of placements, which
is the total number of subtrees; hence, the number of these evalua-
tions scales linearly with the number of leaves. However, the cost of
using RAxML to score a tree is linear in the input size (the product
of the number of leaves and number of sites), so that Step 3b scales
quadratically with the number of leaves rather than linearly. This
is why Step 3b contributes a larger proportion of the running time
as the number of leaves increases.

6 CONCLUSION
Phylogenetic placement is a basic algorithmic step in several bioin-
formatics analyses, including the construction of very large trees
(i.e., by adding newly discovered sequences into existing phyloge-
nies) and metagenomic taxon identification and abundance pro-
filing. Because these analyses are based on large backbone trees,
potentially with hundreds of thousands of leaves, phylogenetic
placement methods that can scale to large datasets are needed.

To date, the most accurate phylogenetic placement methods
have been based on likelihood calculations, with pplacer the most
successful for accuracy but the least successful for scalability. The
next most accurate method, EPA-ng, is somewhat more scalable
than pplacer, but it too fails on backbone trees with 50,000 sequences
(and may have a lower threshold than this). Alternative approaches
based on distances, such as APPLES, have been developed, which
can scale to large datasets, but these have displayed lower accuracy
than the likelihood-based methods. Thus, prior to this study, the
only scalable methods were based on distances, with APPLES being
perhaps the current most accurate such method.

Here we presented pplacerDC, which uses a divide-and-conquer
approach to extend pplacer to large backbone trees. Our study
establishes that this approach provides excellent accuracy, matching
pplacer where pplacer can run, and superior to that of EPA-ng. In
consequence, pplacerDC is also more accurate than APPLES. Our
study showed that pplacerDC can run on backbone trees with up
to 100,000 leaves, thus substantially exceeding the limit of a few
thousand for pplacer (which fails on many backbone trees with
5000 or more leaves) and EPA-ng (which fails on backbone trees
with 50,000 or more leaves), thus establishing pplacerDC as the first
likelihood-based phylogenetic placement method that can run on
datasets of this size.

Thus, the divide-and-conquer approach we used in pplacerDC
addresses a limitation of existing maximum likelihood based place-
ment methods: the limitation to small backbone trees. However,
pplacerDC is much slower than APPLES, and we did not evalu-
ate pplacerDC on the 200,000-taxon backbone trees. Thus, while
pplacerDC provides improved accuracy in the range in which we
examined it, it does not match the speed of APPLES and may not
match it for scalability to ultra-large backbone trees.

This study leaves much room for future work. First, our imple-
mentation is in Python, and so improving the implementation to
reduce memory usage and running time is needed. In particular,
reducing the reliance on Dendropy (which is designed for fast pro-
totyping but not for efficiency on large datasets) would be a good
start towards improving the speed, and would directly address the
running time usage for Step 3a. Equally importantly, as discussed
earlier, Step 3b in pplacerDC has a reliance on maximum likelihood
calculations on the entire backbone tree, which may make it in-
feasible for ultra-large backbone trees. As we have not evaluated
pplacerDC on the largest backbone trees with 200,000 leaves, we
do not yet know if this will be an issue, and so this determination
is needed. However, in general, we hypothesize that for sufficiently
large backbone trees, numerics issues will need to be addressed for
pplacerDC tomaintain its high accuracy. (We add, however, that this
is a general problem for likelihood-based estimation of phylogenies,
and not restricted to phylogenetic placement methods.)

Secondly, in using the same evaluation protocol as [1], we only
explored phylogenetic placement methods when given full-length
query sequences, rather than short query sequences. This is ap-
propriate for the setting where the placement method is used to
characterize a newly discovered full length sequence, or to add
new sequences into an existing large phylogeny. However, phyloge-
netic placement is also used in characterizing metagenomic reads,
which will typically be short and have sequencing error, which is a
different setting. Here we note that [6] found RAPPAS to be less
accurate than maximum likelihood placement methods (EPA-ng
and pplacer) in placing query sequences that have sequencing error.
Thus, we would predict that likelihood-based placement methods
should generally be more accurate in placing reads (short query
sequences with sequencing error) into backbone trees than alter-
native approaches that are based on distances (especially if not
provided with accurately estimated multiple sequence alignments),
but future work is needed to confirm this.

Thirdly, our study focused on enabling highly accurate likelihood-
based analyses on large backbone trees, rather than on running
time (which APPLES excels in) or scalability with the number of
query sequences (which EPA-ng is designed for). Future work is
needed to explore these aspects, and pplacerDC will need to be
re-implemented for scalability to become competitive in these re-
spects. In particular, pplacerDC was implemented using Dendropy
[16], a library which is not well suited for large trees. The next
implementation will take advantage of TreeSwift [11], which is a
library for tree estimation algorithms designed specifically for large
trees.

We close with some basic problems that are not specific to pplac-
erDC. A very basic question is why pplacer is more accurate than
EPA-ng on the datasets on which it can run, since they both use the
same optimization criterion and presumably similar heuristics. It is

BCB ’21, August 1–4, 2021, Gainesville, FL, USA Koning, Phillips, and Warnow

also important to understand why pplacer has reduced accuracy
towards the upper end of its range of applicability, and why it is is
limited to small backbone trees. We hypothesize that pplacer may
have numerical issues when placing into large backbone trees, and
that an improved implementation of pplacer may produce large
benefits.

We note also that the divide-and-conquer pipeline we presented
could be used with any phylogenetic placement method, and is
not restricted to pplacer. Hence, if new phylogenetic placement
methods are developed that improve on the accuracy of pplacer,
they could be used instead of pplacer in the pplacerDC divide-and-
conquer pipeline. Finally, pplacerDC is just one attempt at divide-
and-conquer, and other approaches may also lead to improvements.
For example, a related divide-and-conquer technique that is more
restricted in that it limits placement to a selected small subset of
the backbone tree has just been developed and also shows promise
[17]. The importance of phylogenetic placement methods suggests
that future work should investigate additional divide-and-conquer
strategies to enable highly accurate placement and advance large-
scale phylogeny estimation.

APPENDIX
This appendix provides details about materials and methods used
in this study.

APPLES
The version of APPLES used is v1.2.0. The source code can be
accessed at
https://github.com/balabanmetin/apples/releases.

The command used to run APPLES is
run_apples.py -T 16 -t backbone_app.tre

-q query.fa -s aln_dna.fa -o apples.jplace

RAxML-NG
The version of RAxML-NG used by pplacerDC is v1.0.1. A pre-
built binary can be accessed at
https://github.com/amkozlov/raxml-ng/releases/tag/1.0.1.

The source code for RAxML-NG can be accessed at
https://github.com/amkozlov/raxml-ng.git

pplacer
The version of pplacer used is the pre-built binary for v1.1.alpha19,
which can be accessed at
https://github.com/matsen/pplacer/releases/tag/v1.1.alpha19.

The command used to run pplacer is
pplacer -m GTR -s RAxML_info.REF

-t backbone_pp.tre -o pplacer.jplace aln_dna.fa

EPA-ng
The version of EPA-ng used is v0.3.8. The source code can be ac-
cessed at

https://github.com/Pbdas/epa-ng.git

The command used to run epa-ng is
epa-ng –ref-msa aln_dna.fa –tree backbone_epa.tre –query
query.fa –model RAxML_info.REF8 –redo

pplacer-DC
pplacerDC uses dendropy for tree modification [16]. Dendropy is
known to not work well on large trees, so while it was useful for
this version of pplacerDC, future versions will use methods better
suited to large trees. This should particularly have an impact on
the time required for step 3a. (See figure 6.)

The source code for pplacerDC can be accessed at
https://github.com/kodingkoning/pplacerDC.git

The command to run pplacerDC is pplacerDC.py -m 2500 -s
RAxML_info.REF

-t input.tre -q $query -r aln_dna.fa
-o pplacerDC.tre

Datasets
The RNASim-VS datasets may be accessed through the supple-
mentary materials of [1].

Results from theRNASim-VS dataset and the scripts used to run
the analyses may be accessed with the pplacerDC code on GitHub.

Other Software Commands
nw_prune:
The commands to use nw_prune to create backbone trees are:
nw_prune RAxML_result.REF $query

&> backbone_pp.tre
nw_prune true_me.fasttree $query

&> backbone_app.tre
nw_prune RAxML_result.REF8 $query

&> backbone_epa.tre

Each of the full trees were included with the RNASim-VS data.

Processing jplace outputs:

The command to extract the tree from the jplace output of pplacer
or APPLES is:
guppy tog -o output.tre output.jplace

Evaluating placement error:
To evaluate the topological error of a tree, either measure_all.sh
or treecompare.py from the common directory of the pplacerDC
repository can be used.

pplacerDC: a New Scalable Phylogenetic Placement Method BCB ’21, August 1–4, 2021, Gainesville, FL, USA

measure_all.sh also requires compareTrees.missingBranch from
the repository found at https://github.com/smirarab/global
measure_all.sh evaluates pplacer, pplacerDC, APPLES, and EPA-
ng in the given directory with the following command
./measure_all.sh $dir $size
where size exempts evaluating EPA-ng and pplacer in cases where
the tree size is too large for them to run.

treecompare.py can be run using the command

python3 treecompare.py true_topo.tree output.tre
backbone.tre backbone_true.tre

where
• true_topo.tre is the full true tree including the query,
• output.tre is the resulting tree from any query placement,
• backbone.tre is the tree that was given as input to the
placement method, and
• backbone_true.tre is true_topo.trewith the query pruned
from it.

The output of pplacerDC is a tree, not a jplace file, so its output
may be used directly in place of output.tre without using guppy.

For an example using pplacer, these can be generated with
nw_prune and guppy using:
guppy tog -o pplacer.tre pplacer.jplace
nw_prune RAxML_result.REF $query

&> backbone_pp.tre
nw_prune true_topo.tree $query

&> backbone_true.tre
and for the other three approaches, the appropriate trees should be
selected in place of pplacer.jplace and RAxML_result.REF.

Taxa 10,000 100,000
Step 1 2.94 40.69
Step 2 25.25 93.09
Step 3a 2.97 499.91
Step 3b 2.46 448.67

Table 3: Times in seconds for each step of pplacerDC for two
different tree sizes (results here are also shown in Figure 6).

ACKNOWLEDGEMENTS
We thank Siavash Mirarab and Metin Balaban for help in using
APPLES. We thank Eleanor Wedell for help running RAxML for
the trees of 100,000 taxa which had duplicate sequences. This work
began as a course project by EK and MP for the Fall 2020 course
CS 581: Algorithmic Genomic Biology, at the University of Illinois,
taught by TW.

FUNDING
This work was supported in part by the US National Science Founda-
tion through grant ABI-1458652 to TW. This study was performed
on the Illinois Campus Cluster, a resource operated and financially

supported by UIUC in conjunction with the National Center for
Supercomputing Applications.

REFERENCES
[1] Metin Balaban, Shahab Sarmashghi, and Siavash Mirarab. 2020. APPLES: Scalable

distance-based phylogenetic placement with or without alignments. Systematic
Biology 69, 3 (May 2020), 566–578. DOI: https://doi.org/10.1093/sysbio/syz063.

[2] Pierre Barbera, Alexey M. Kozlov, Lucas Czech, Benoit Morel, Diego Darriba,
Tomáš Flouri, and Alexandros Stamatakis. 2018. EPA-ng: Massively Parallel
Evolutionary Placement of Genetic Sequences. Systematic Biology 68, 2 (09 2018),
365–369. DOI: https://doi.org/10.1093/sysbio/syy054.

[3] Matthias Blanke and Burkhard Morgenstern. 2020. Phylogenetic place-
ment of short reads without sequence alignment. bioRxiv (2020). DOI:
https://doi.org/10.1101/2020.10.19.344986.

[4] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. 2011.
Parallel distributed computing using Python. Advances in Water Resources
34, 9 (2011), 1124 – 1139. http://www.sciencedirect.com/science/article/pii/
S0309170811000777 DOI: https://doi.org/10.1016/j.advwatres.2011.04.013.

[5] Alexey M. Kozlov, Diego Darriba, Tomáš Flouri, Benoit Morel, and Alexandros
Stamatakis. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics 35, 21 (05 2019), 4453–4455.
DOI: https://doi.org/10.1093/bioinformatics/btz305.

[6] Benjamin Linard, Krister Swenson, and Fabio Pardi. 2019. Rapid alignment-free
phylogenetic identification of metagenomic sequences. Bioinformatics 35, 18
(2019), 3303–3312. https://doi.org/10.1093/bioinformatics/btz068

[7] Kevin Liu, Tandy J. Warnow, Mark T. Holder, Serita M. Nelesen, Jiaye Yu, Alexan-
dros P. Stamatakis, and C. Randal Linder. 2012. SATé-II: very fast and accurate
simultaneous estimation of multiple sequence alignments and phylogenetic trees.
Systematic Biology 61, 1 (2012), 90. DOI: https://doi.org/10.1093/sysbio/syr095.

[8] Frederick A. Matsen, Robin B. Kodner, and E. Virginia Armbrust. 2010. pplacer:
linear time maximum-likelihood and Bayesian phylogenetic placement of se-
quences onto a fixed reference tree. BMC Bioinformatics 11, 1 (Oct. 2010), 538.
DOI: https://doi.org/10.1186/1471-2105-11-538.

[9] Siavash Mirarab, Nam-phuong Nguyen, Sheng Guo, Li-San Wang, Junhyong Kim,
and Tandy Warnow. 2015. PASTA: Ultra-Large Multiple Sequence Alignment
for Nucleotide and Amino-Acid Sequences. Journal of Computational Biology 22
(2015), 377–386. DOI: https://doi.org/10.1089/cmb.2014.0156.

[10] Siavash Mirarab, Nam-phuong Nguyen, and Tandy Warnow. 2012. SEPP:
SATé-enabled phylogenetic placement. In Biocomputing 2012. World
Scientific, 247–258. https://doi.org/10.1142/9789814366496_0024 DOI:
https://doi.org/https://doi.org/10.1142/9789814366496_0024.

[11] Niema Moshiri. 2020. TreeSwift: A massively scalable Python tree package.
SoftwareX 11 (2020), 100436. https://doi.org/10.1016/j.softx.2020.100436 DOI:
https://doi.org/10.1016/j.softx.2020.100436.

[12] Nam-phuong Nguyen, Siavash Mirarab, Bo Liu, Mihai Pop, and Tandy Warnow.
2014. TIPP: taxonomic identification and phylogenetic profiling. Bioinformatics
30, 24 (Dec. 2014), 3548–3555. DOI: https://doi.org/10.1093/bioinformatics/btu721.

[13] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. 2010. FastTree 2 –
Approximately maximum-likelihood trees for large alignments. PLOS ONE 5, 3
(03 2010), 1–10. DOI: https://doi.org/10.1371/journal.pone.0009490.

[14] Alexandros Stamatakis. 2006. RAxML-VI-HPC: maximum likelihood-based phy-
logenetic analyses with thousands of taxa and mixed models. Bioinformatics 22,
21 (08 2006), 2688–2690. DOI: https://doi.org/10.1093/bioinformatics/btl446.

[15] Alexandros Stamatakis. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30, 9 (01 2014), 1312–1313.
DOI: https://doi.org/10.1093/bioinformatics/btu033.

[16] Jeet Sukumaran and Mark T. Holder. 2010. DendroPy: a Python library for
phylogenetic computing. Bioinformatics 26, 12 (04 2010), 1569–1571. DOI:
https://doi.org/10.1093/bioinformatics/btq228.

[17] EleanorWedell, Yirong Cai, and TandyWarnow. 2021. Scalable and Accurate Phy-
logenetic Placement Using pplacer-XR. In International Conference on Algorithms
for Computational Biology. Springer, 94–105.

http://www.sciencedirect.com/science/article/pii/S0309170811000777
http://www.sciencedirect.com/science/article/pii/S0309170811000777
https://doi.org/10.1093/bioinformatics/btz068
https://doi.org/10.1142/9789814366496_0024
https://doi.org/10.1016/j.softx.2020.100436

	Abstract
	1 Introduction
	2 Approach
	3 Experimental Evaluation
	3.1 Methods
	3.2 Experiments
	3.3 Backbone trees
	3.4 Error Assessment

	4 Results
	4.1 Experiment 1: Subtree Size
	4.2 Experiment 2: Evaluating accuracy
	4.3 Experiment 3: Evaluating computational scalability

	5 Discussion
	6 Conclusion
	References

