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Introduction 
Computational biology involves immense volumes of data in sequences of DNA. A common             

question about the sequences is, “how similar are two or more sequences?” k-mers are a widespread tool                 
to answer the question. k-mers are segments of length k that are in the larger sequence. Comparing which                  
k-mers are in two different sequences can measure the similarity between sequences. 

A way to address the issue of the large number of k-mers that are involved in these comparisons                  
is to use MinHash. This approach creates “sketches” made of subsets of the k-mers in a sequence. The                  
sketches save memory use and compute time. 

This project builds on existing work on k-mer sketchers to develop a parallelized, distributed              
implementation of a k-mer sketcher. Using parallel I/O and k-mer selection prediction, the project focuses               
on creating an efficient and usable system. 

As for the project's title, “Cal” is an abbreviation for both the University of California, Berkeley,                
and Calvin University. The project is a senior project at Calvin in collaboration with a lab at Berkeley.                  
The Berkeley advisors are Kathy Yelick and Aydın Buluç. “DisKS” stands for “distributed k-mer              
sketcher.” 

Background 

Computational Biology and k-mers 
A major aspect of computational biology is analyzing genetic sequences. A genetic sequence             

might be a complete genome, but it is often shorter sequences of DNA or RNA characters. Obtaining a                  
complete genome of an organism requires piecing together shorter components that are possible for              
sequencing technology to read. These shorter segments are called “reads.” Assembling a genome is a               
computationally intensive process. Multiple reads over the same potion of the genome is necessary              
because of read errors and the assembly process. 

Metagenomics analyzes the genetics of multiple organisms together. Instead of isolating the DNA             
of a single species and sequencing, metagenomics takes a sample of organic material from the               
environment, and sequences it together with all of the different species’ DNA. This can offer insights into                 
the community in that environment. 

A major issue in computational biology and genetics is the massive amounts of data involved in                
the problems. The complete human genome has 3 billion base pairs, which requires at least 750                



megabytes to store. The data to assemble the genome is larger, and metagenomic samples are larger still.                 
Metagenomics data sets frequently have 3-10 terabytes of data. As the technologies to produce the data                
improve, the amount of data available increases as well, so the volume is only growing. 

One common strategy used throughout computational biology to address the amount of genetic             
data is to break the sequences into smaller chunks, called k-mers. A k-mer is a sequence of k bases from                    
the longer string of characters. The k-mers can be stored as a set or multi-set. Then, the sequences can be                    
analyzed based on which k-mers they contain, and sequences can be compared based on their k-mer                
content. 

K-mers are often used to answer the question, “how similar are two DNA sequences?” There are                
two major applications of comparing sequences with k-mers. In the first, the goal is alignment. This is                 
typical for genome assembly and focuses on finding a very accurate identification of if and how the                 
sequences overlap. In this first case, k-mers could be used to identify sequences that are likely to overlap,                  
and then a nucleotide-level comparison can be performed. In the second, the goal is to estimate similarity.                 
In this case, an approximation rather than a precise calculation can be used, which is a much less intensive                   
computation. 

In both cases, there is still the problem of having many k-mers. While k-mers are useful for                 
efficient comparison, they do not decrease the amount of memory required. There are very many k-mers                
involved, as there is a k-mer for every sequence of k bases in the original data set. 

The Cal-DisKS project focuses on the second case, where the goal is an estimation. In order to                 
more efficiently estimate the similarity between sequences, it uses the MinHash technique. 

MinHash Technique 
MinHash is a technique that “sketches” the set of k-mers in a set. This limits the memory needed,                  

and makes set comparison much faster. To do this, it creates a set that is a subset of the k-mers in the                      
sequence, which can be thousands of times smaller than the original representation. Yet the sketch or                
subset is still a useful approximation. In selecting a size for the sketch, there is a trade-off between                  
maximizing precision and minimizing memory. While the error is based on the side of the sketch rather                 
than the size of the data set, a large sketch has lower error, and a smaller sketch requires less memory and                     
compute time. 

Selecting appropriate k-mers for the sketch is a key aspect in achieving an accurate representation               
of the overall set. Choosing random k-mers would result in a high level of error due to sketches of                   
different sets not necessarily selecting their shared elements. Choosing the lexicographic smallest k-mers             
would be biased, and likely not offer an accurate representation either. However, choosing the minimum               
hash values of the k-mers can offer an accurate selection. The hash values can be spread across the entire                   
range of k-mers. 

The sketch is created by hashing each of the k-mers and storing a defined number of k-mers with                  
the smallest hash values. 

Figure 1 shows this selection process. The large shaded circles are the two sets, from two                
different files. Then, the small circles represent each of the k-mers in these data sets. The filled circles are                   
those which are kept in the sketch representation. Here, the size of the set is five, so each of the sets                     
contains five elements. This enables computation of the percent identity between two sketches. With each               
of the hash values of the approximation in sets, the intersection can be found. 



In the computation, the process reads each of the k-mers and adds it to the set. When the set                   
capacity is reached, then it discards the maximum values to include the smaller values. 

 
Figure 1: MinHash structures and set comparison.  1

Distributed Computing 
Distributed computing enables using distributed computing systems to coordinate multiple          

computers throughout a supercomputer or a networked system. Cal-DisKS has been developed in order to               
work well on a supercomputer with a parallel file system, so that all the processes can access the same file                    
to read simultaneously. 

A supercomputer is composed of many computing nodes that have their own local data, but that                
can send messages between the local memory in order to coordinate their calculations.  

MPI, an acronym for Message Passing Interface, is a standard for message passing on distributed               
systems. MPI allows for various different types of communication. The most simple are sends and               
receives, where individual processes can send data, whether that be integers, doubles, or characters, to               
another individual process. The communication used in Cal-DisKS is gather. The gather communication             
pattern sends arrays from each of the nodes to a single root process. That process then accepts its own                   
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local array and the local arrays of the other processes as one global array, with a length of the number of                     
process times the number of elements per process. 

Distributed computing, in general, breaks down problems into smaller sections that can be             
sectioned into smaller portions for the different computing nodes to handle. Cal-DisKS focuses on data               
parallelism. This allows different nodes to handle a chunk of the data and them assemble it into the single                   
sketch of the dataset.  

Design 
The initial goal of the Cal-DisKS project was to modify an implementation of MinHash to work                

in a distributed system by using BCL (Berkeley Container Library). There are a few different               
implementations of MinHash that have been published, but none of them have a distributed computing               
component. 

BCL is a library created at Berkeley by Ben Brock. It provides data structures that can be used                  2

with a variety of distributed computing environments, including MPI and UPC++. Its structures include              
many basic data structures, including queues and hash tables. BCL was chosen as the initial approach for                 
the distributed requirement of the project because the writer of the library is one of the advisors, and was                   
available to add to the library for this project. 

For the sketching portion of the project, an existing implementation of MinHash needed to be               
selected from the published versions. 

The implementation that was finally selected was sketch. This implementation is a header-only             3

C++ library of sketch data structures. The interface requires individual elements to be added to the sketch                 
object, but the elements can be of any type that can be included in a C++ set. It does not read from a file                        
to select the k-mers. The class that is used for this project is RangeMinHash, which stores the k-mer hash                   
values in a C++ standard library set, and manages the size of the set by removing elements from the end                    
as necessary. Another reason that sketch was selected was because one of the authors recently joined                
LBNL and was available for questions on this project. 

Another implementation that was seriously considered was Mash. This implementation has very            
thorough I/O with multiple different file types. At one point in development, Mash was selected as the                 
implementation to work with, but the dependencies for the project were not able to be installed on Cori or                   
the Calvin lab computers, so sketch was used instead. A second concern about using Mash was with the                  
I/O. While the interface Mash uses to sketch from a file is very convenient, it also writes the sketch out to                     
a file. Other implementations store the sketch in memory. This means that there is added I/O time for                  
sketching and then comparing sets. 

Two other implementations were also considered and not used. An implementation from the             
Kingsford lab was also considered. However, the project included code in C++, Python, and Perl, and was                 
challenging to run. Because of the parallelization goal, the Perl and Python code meant that this code was                  
not a good fit for the project, as it would not be compatible with C++ MPI. The other was jaccard-ctf and                     
also had compilation problems. 

2 Brock. 
3 Baker. 



Because of the collaboration with Berkeley, the supercomputer the project was designed to use,              
adn primarily tested on, Cori, a NERSC supercomputer at Lawrence Berkeley National Lab. However, it               
should work as well on other supercomputers. 

Implementation 

Threshold 
Along with including distributed computing in the project, Cal-DisKS assessed the inclusion of a              

threshold to pre-filter the k-mers as they are added to the set. As k-mers are added to the MinHash set,                    
most of them are discarded. Before adding any of the k-mers to the sets, Cal-DisKS predicts where the                  
cutoff of the hash values will be after all of the k-mers have been added. This avoids storing many values                    
that will never be needed. 

The calculation is: 

 
 

The maximum and minimum hash values are defined by the range of the hash function. The                
desired number of k-mers is selected by the user of the application. However, the number of unique                 
values is not given. Based on the size of the data file, the total number of k-mers is known, but there are                      
many repeated k-mers in the file. 

In order to make use of the threshold, calculating the expected number of unique k-mers is                
necessary. 

The calculation for the expected number of unique k-mers is:  4

 

 
 
where n is the universe of k-mers (all different k-mers that could be in the data set), and k is the number                      
of k-mers in input the file (from the size of the file). 

However, this calculation requires very large numbers. N is the number of k-mers that exist in the                 
universe of k-mers, not just in the file. This means that for very short k-mers of length 7, n is 47 = 16,384.                       
With a typical k-mer of k = 21, n is 421. While C++ offers an unsigned long long for large values, it is                       
only 64 bits, which has a maximum value of 264. The values in the expected value calculation quickly                  
grow beyond this maximum. In order to address this issue, the project used a BigInt class, which                 
accommodates large values by adding digits as necessary. 

This calculation is not cheap, so it is not included in the final version. With calculating the                 
fraction to the power of k, it is O(log(k)). The calculation of unique k-mers is not parallelized and is not a                     
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quick calculation, due to the large values and the use of BigInt. In practice, this takes significantly longer                  
than the time required to read through the file. Because of the structure of the parallel I/O, there was no                    
gain from calculating the threshold. Once the sketch is at capacity, checking each value against the                
current maximum value requires little overhead, and comparing against a threshold shows no gain relative               
to comparing the new value to the maximum. 

Parallel Sketching 
The main contribution of Cal-DisKS is the use of parallel I/O and sketching. Though various               

computational biology applications use parallel I/O, the sketcher implementations referenced are only            
designed to work with shared memory in both their input and their sketching process. While the original                 
version of sketch can use SIMD parallelism and is largely thread safe, it does not have a distributed                  
computing component. 

In the Cal-DisKS implementation, in order to read the file of genetic sequences, the processes               
divide the file into equal parts. Each process reads its portion of the file. If the fraction assigned to a                    
process is too large to read at once, then it is further divided into smaller segments, which are sketched                   
sequentially. It then breaks the sequence into k-mers. It uses these k-mers to create a local sketch. This                  
local sketch is stored on the individual node and is equal to the target size of the global sketch. After each                     
local sketch is created, they are sent to process 0, which adds the sketches into a single sketch that                   
becomes the global sketch of the data set. 

Once this sketch is created, it can be compared to other sketches to describe the similarity                
between this set of sequences and another set of sequences. Through the command line options with the                 
Cal-DisKS executable, two files can be specified along with the length of the k-mers and the size of the                   
sketches. It will sketch one, and then the other, and the output will include the time required for the                   
sketching and the similarity between the two datasets. 



 
Figure 2: Parallel I/O and sketch comparison. 
 

Parallel I/O 
MPI parallel I/O offers speedup with parallel distributed file systems. Cori uses a Lustre file               

system, so the parallel I/O is highly effective. In order to use the parallel I/O, the job submission script                   
must have the appropriate options selected. 

With using MPI parallel I/O commands, but not using Cori’s Burst Buffer, there was some               
speedup with increasing the number of processes, but it increased at 64 processes on two nodes. While the                  
sketch time continued to improve, and the time required to send and combine the sketches was minimal,                 
the I/O time increased. 

However, when the Burst Buffer was used, the I/O time improved not only in its scalability, but                 
for every number of processes. For a single process, it lowered the I/O time to a third of the non-Burst                    
Buffer timing, and improvements for 2-64 processes were even higher in proportion. This change did not                
require modifying the code, but was a change in the job submission script. The script used to run on Cori                    
is included in the Appendix (cori_job.sh). Because of the system’s requirements, the datasets must be               
located in the SCRATCH directory. (Also note that for this script to be used, the paths will need to be                    
modified, as they must be the absolute path, and cannot use environment variables.) 

The Burst Buffer copies the files into near SSD storage, from the far HDD storage. This allows                 
faster access for reading the file. A required option to use the Burst Buffer is selecting the capacity. For                   
testing on the 8.9G and 928M files, 10G of memory was requested. 



The timing results for the tests without using the Burst Buffer is included in the figures below,                 
and the final testing results are in the Results section. 
 
The average timing over three runs without using the Burst buffer for the C. elegans dataset (8.9G) is: 
C. elegans Timing without Burst Buffer 

 

Nodes Processes I/O time sketch time combine time total time 

1 1 21.4627 579.5550 1.1881 602.2057 

1 2 9.6748 291.8123 0.4605 301.9473 

1 4 10.4249 145.9183 4.1409 160.4840 

1 8 7.9373 79.5090 0.2861 87.7324 

1 16 14.9756 45.1554 0.7347 60.8657 

1 32 18.0302 23.2735 0.5845 41.8882 

1 64 99.4370 18.9789 0.9012 119.3171 

 
The average timing over three runs using the Burst buffer for the E. coli dataset (928M) is: 
E. coli Timing without Burst Buffer 

 

Nodes Processes I/O time sketch time combine time total time 

1 1 2.5067 61.9531 0.0000 64.4598 

1 2 1.8077 31.2294 0.0000 33.0371 

1 4 5.6716 15.6003 0.2140 21.4859 

1 8 3.5833 8.5160 0.0354 12.1348 

1 16 9.8961 4.8383 0.0125 14.7468 

1 32 17.1146 2.4916 0.0141 19.6204 

1 64 76.8189 1.9691 0.1748 78.9628 

 



 
In comparison, computers without parallel I/O capabilities would see less of a gain from the               

parallelism. Because Calvin’s Borg does not have a distributed file system, but instead a single file server                 
node, the project would run on Borg, but would not benefit from the parallelism in the same way. The                   
project was tested on Cori, but not on Borg or other supercomputers without parallel I/O. A solution that                  
would be more fitting for Borg would be to have the main process do all of the I/O and send values to the                       
other nodes to process the data. However, this implementation would need to be tested to evaluate                



whether the additional sends were more or less expensive than the computations that each node could                
perform. 

Managing Large Files 
In development, the size of the data files used and the large numbers used throughout the program 

caused errors. In the final implementation, these challenges were addressed in a variety of ways. 
Beyond the challenges with the large values involved in calculating the threshold, the large file 

sizes also required considering the maximum values of integers and values relevant to reading and 
viewing the files. While an early implementation attempted to read a process’s entire portion of the file in 
a single MPI read command, the final implementation calculates whether this is possible, and if not, 
breaks it into smaller parts. 

The read function, MPI_file_read_at(), takes a “count” parameter as an int, which specifies how 
many items are read from the file. For the file size and offset within the file, MPI accepts a parameter of 
type MPI_Offset, which is able to handle values up to the maximum file size that MPI can read from. 
However, the count parameter will exceed the maximum value of an int, if the file size is too large. 

In order to be able to process the full file, the processes calculate the minimum number of chunks, 
which is the file size / maximum int. If the minimum number of chunks is greater than the number of 
processes, then each process divides its assigned segment into the minimum number of chunks that can be 
fully read. 

The full I/O code is included in the Appendix in mpiParallelIO.cpp. 

Results 
The final version of Cal-DisKS uses MPI for parallel I/O, and combines the local sketches into a                 

single global sketch. That sketch can then be compared to other sketches created in the same way with a                   
different input file. 

The testing compared a FASTQ file with C. elegans reads to a FASTQ file with E. coli reads. The                   
C. elegans file was 8.9G and the E. coli file was 928M. The testing used k = 13 and a sketch size of 150.                        
All of the testing was conducted on Cori’s Haswell nodes. The nodes have 32 cores each. 

The threshold feature was very time intensive, and therefore excluded from the final versions.              
Future work might include developing more efficient code to estimate the appropriate threshold. 

In order for the program to be able to use the parallel I/O system on Cori, it must use a Burst                     
buffer, which brings the file storage to a Near Storage SSD rather than the Far Storage HDD that is used                    
by default. This is a modification that is done in the Slurm submission file, not in the C++ code. Without                    
the Burst buffer, the I/O portion of the software requires more time for all numbers of processes, and                  
slows down significantly with the higher number of processes (32 and above). 
 
 
 
 
 



The average timing over three runs using the Burst buffer for the C. elegans dataset (8.9G) is: 
C. elegans Timing 

 

Nodes Processes I/O time sketch time combine time total time 

1 1 6.2063 579.5195 0.0241 585.7500 

1 2 3.6344 291.2890 0.2198 295.1433 

1 4 2.1692 146.0260 0.2393 148.4343 

1 8 1.6625 79.3305 0.4542 81.4472 

1 16 1.3505 45.2477 0.1394 46.7375 

1 32 1.3166 23.3216 0.1648 24.8030 

2 64 1.3542 11.6446 0.1178 13.1165 

4 128 1.3519 5.8666 0.0630 7.2814 

8 256 1.4855 2.9259 0.0830 4.4944 

 
The average timing over three runs using the Burst buffer for the E. coli dataset (928M) is: 
E. coli Timing 

 

Nodes Processes I/O time sketch time combine time total time 

1 1 0.7063 61.9713 0.0000 62.6776 

1 2 0.3383 31.2388 0.0407 31.6178 

1 4 0.2014 15.6038 0.0542 15.8594 

1 8 0.1624 8.4909 0.0556 8.7088 

1 16 0.1701 4.8425 0.0108 5.0234 

1 32 0.1734 2.4912 0.0260 2.6906 

2 64 0.2026 1.2492 0.0203 1.4720 

4 128 0.2576 0.6260 0.0280 0.9116 

8 256 0.3778 0.3123 0.0606 0.7507 

 



 

 
The timing results show that parallelizing the sketching process is effective in reducing the time               

required to create a sketch and in the I/O. Gathering the local sketches to the root process is done in O(P)                     
time, where P is the number of processes used. In these tests, the combine time was a small fraction of the                     
overall time, but if a greater number of processes is needed in applications, then future work could include                  
implementing a O(log(P)) time gather function. The application parallelized effectively, improving its            
ability to handle large datasets. 
 



Future Work 
In future development of the project, improvements to consider are: 

1. To improve time efficiency, development should begin with the local sketching portion of the 
code. The current implementation is designed to be simple and efficient, but there is likely room 
for improved efficiency. 

2. Adding an option to use MPI scatter or send instead of MPI parallel I/O in the case of systems 
that lack the hardware for parallel I/O and where sequential I/O is faster than parallel. 

3. Implementing a O(log(P)) time function to gather the local sketches to the root process, where P 
is the number of processes. The current O(P) time gather has little impact on the overall time, as 
the gather portion is the least time intensive of the parts of the software, but for larger sketches 
and higher numbers of processes, this improvement may be helpful. 

4. Creating a sketch from multiple input files. The current command line options only include the 
k-mer length, the sketch size, and the paths to two files to compare. If sketching multiple files 
into one sketch is desired, this could be done through sketching each of the files and adding the 
sketches together, but could not be done through the command line yet. 
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Appendix: Code Implementation 
This appendix supplies the key files that were added to the original project. This does not include edits to 
existing files, such as mh.h or supplementary files where the majority of the code is from other sources. 
The complete project code can be found at: github.com/kodingkoning/sketch/ 

caldiskstest.cpp 
 

/* caldiskstest.cpp sketches two files using sketch and MPI 

* Elizabeth Koning, Spring 2020 

* for Senior Project at Calvin University. 

*/ 

#include "mh.h" 

#include <random> 

#include <mpi.h> 

#include "bcl/bcl.hpp" 

#include "mpiParallelIO.cpp" 

 

using namespace sketch; 

using namespace common; 

using namespace mh; 

 

int main(int argc, char *argv[]) { 

    int id; 

    if (argc < 5) { 

        fprintf(stderr, "\n*** Usage: caldiskstest <k> <sketchSize> 

<inputFile1> <inputFile2>\n\n"); 

        exit(1); 

    } 

    unsigned k = atoi(argv[1]); // k = 21 is the default for Mash. It should 

not go above 32 because it must be represented by an 64 bit unsigned int. 

    unsigned sketchSize = atoi(argv[2]); 

    std::string filename1 = argv[3]; 

    std::string filename2 = argv[4]; 

    if (k == 0 || sketchSize == 0) { 

        fprintf(stderr, "\n*** k and sketchSize must be integers.\n\n"); 

        exit(1); 

    } 

 

    MPI_Init(NULL, NULL); 



    MPI_Comm_rank(MPI_COMM_WORLD, &id); 

    RangeMinHash<uint64_t> sketch(sketchSize); 

    sketchFromFile(filename1, sketch, k); 

 

    RangeMinHash<uint64_t> sketch2(sketchSize); 

    sketchFromFile(filename2, sketch2, k); 

  

    if (id == 0) { 

        double startTime = MPI_Wtime(); 

 auto s1 = sketch.cfinalize(); 

 auto s2 = sketch2.cfinalize(); 

 double similarity = s1.jaccard_index(s2); 

        double compareTime = MPI_Wtime() - startTime; 

 std::cout << "* similarity between sketches = " << similarity << 

std::endl; 

        std::cout << "* compare time = " << compareTime << std::endl; 

 

        // prints out all of the hashes from the sketch for debugging 

purposes 

        // vector<uint64_t> a = sketch2.mh2vec(); 

        // vector<uint64_t> b = sketch.mh2vec(); 

 

        // std::cout << "C. elegans sketch = " << std::endl; 

        // for(auto ir = a.cbegin(); ir != a.cend(); ++ir) { 

        //     std::cout << *ir << "\n"; 

        // } 

        // std::cout << std::endl; 

        // std::cout << "\nE. coli sketch = " << std::endl; 

        // for(auto ir = b.cbegin(); ir != b.cend(); ++ir) { 

        //     std::cout << *ir << "\n"; 

        // } 

        // std::cout << std::endl; 

    } 

  

    MPI_Finalize(); 

    return 0; 

} 

 

mpiParallelIO.cpp 
/* mpiParallelIO.cpp handles the parallel I/O for Cal-DisKS 

* Elizabeth Koning, Spring 2020 



* for Senior Project at Calvin University. 

*/ 

 

#include <stdio.h>     /* I/O stuff */ 

#include <stdlib.h>     /* calloc, etc. */ 

#include <mpi.h>     /* MPI calls */ 

#include <string.h>     /* strlen() */ 

#include <stdbool.h> /* bool */ 

#include <sys/stat.h> 

#include <iostream> 

#include "mh.h" 

#include "calcThreshold.cpp" 

 

using namespace sketch; 

 

bool debug = false; 

 

void readArray(const char * fileName, char ** a, int * n); 

int  parallelReadArray(const char * fileName, char ** a, int * n, int id, int 

nProcs, unsigned k); 

void scatterArray(char ** a, char ** allA, int * total, int * n, int id, int 

nProcs); 

void sketchKmers(char* a, int numValues, unsigned k, RangeMinHash<uint64_t> & 

kmerSketch, int id); 

void combineSketches(RangeMinHash<uint64_t> & localSketch, 

RangeMinHash<uint64_t> & globalSketch, int nProcs, int id); 

void sketchReduction(RangeMinHash<uint64_t> & localSketch, 

RangeMinHash<uint64_t> & globalSketch, int id, int nProcs); 

 

void sketchFromFile(std::string filename, RangeMinHash<uint64_t>& 

globalSketch, unsigned k) { 

    int nProcs, id, error, minChunks, chunksPerProc; 

    double startTime, totalTime, threshTime, ioTime, sketchTime, gatherTime, 

tempTime; 

    int localCount; 

    char *a; 

    MPI_File file; 

    MPI_Offset fileSize; 

 

    MPI_Comm_rank(MPI_COMM_WORLD, &id); 

    MPI_Comm_size(MPI_COMM_WORLD, &nProcs); 

 

startTime = MPI_Wtime(); 



 

    // TODO : would be better to only calculate this on one process 

// BigInt threshold = find_threshold(filename, k, SKETCH_SIZE); 

threshTime = MPI_Wtime(); 

 

RangeMinHash<uint64_t> localSketch(globalSketch.sketch_size()); 

  

// open MPI file for parallel I/O 

error = MPI_File_open(MPI_COMM_WORLD, filename.c_str(), 

MPI_MODE_RDONLY, MPI_INFO_NULL, &file); 

if (error != MPI_SUCCESS) { 

 fprintf(stderr, "\n*** Unable to open input file '%s'\n\n", 

filename.c_str()); 

} 

 

// get the size of the file 

error = MPI_File_get_size(file, &fileSize); 

if (error != MPI_SUCCESS) { 

 fprintf(stderr, "\n*** Unable to get size of file '%s'\n\n", 

filename.c_str()); 

} 

 

minChunks = fileSize / INT_MAX + (fileSize % INT_MAX != 0); 

if(debug) std::cout << "Minimum chunks = " << minChunks << std::endl; 

if(minChunks <= nProcs) { 

 chunksPerProc = 1; 

 parallelReadArray(filename.c_str(), &a, &localCount, id, nProcs, k); 

 ioTime = MPI_Wtime(); 

 sketchKmers(a, localCount, k, localSketch, id); 

 free(a); 

 sketchTime = MPI_Wtime(); 

} else { 

 ioTime = 0; 

 sketchTime = 0; 

 chunksPerProc = minChunks / nProcs + (minChunks % INT_MAX != 0); 

 for(int chunk = id*chunksPerProc; chunk < (id+1)*chunksPerProc; 

++chunk) { 

  tempTime = MPI_Wtime(); 

  parallelReadArray(filename.c_str(), &a, &localCount, chunk, 

nProcs*chunksPerProc, k); 

  ioTime += MPI_Wtime() - tempTime; 

  sketchKmers(a, localCount, k, localSketch, id); 

  free(a); 



  sketchTime += MPI_Wtime() - tempTime; 

 } 

} 

 

    if(debug) std::cout << "Process " << id << ": Local sketching complete." 

<< std::endl; 

 

combineSketches(localSketch, globalSketch, nProcs, id); // 

sketchReduction() is buggy, so combineSketches() must be used 

    // sketchReduction(localSketch, globalSketch, id, nProcs); 

    if(debug) std::cout << "Process " << id << ": Sketches combined." << 

std::endl; 

 

gatherTime = MPI_Wtime(); 

 

totalTime = MPI_Wtime() - startTime; 

 

if (id == 0) { 

  std::cout << "For file " << filename << " with " << nProcs << " 

processes: " << std::endl; 

  std::cout << " * Used " << chunksPerProc << "  chunks per process" << 

std::endl; 

  std::cout << " * Threshold calculation time = " << (threshTime - 

startTime) << std::endl; 

  std::cout << " * Parallel read from file time = " << (ioTime - 

threshTime) << std::endl; 

  std::cout << " * Local sketching time = \t" << (sketchTime - ioTime) 

<< std::endl; 

  std::cout << " * Sketch combine time = \t" << (gatherTime - 

sketchTime) << std::endl; 

  std::cout << " * Total Cal_DisKS time = \t" << (totalTime) << 

std::endl; 

} 

} 

 

/* parallelReadArray fills an array with values from a file. 

 * Receive:    fileName, a char* 

 *  a, the address of a pointer to an array, 

 *  n, the address of an int, 

 *  id, an int id of the current process, 

 *  nProcs, an int number of MPI processes 

 *  k, an int for the length of the k-mers. 

 * PRE: fileName contains k-mers, and may contain other characters. 



 * POST: a points to a dynamically allocated array 

 *     containing file size / nProcs values from fileName. 

 */ 

int parallelReadArray(const char *fileName, char **a, int *n, int id, int 

nProcs, unsigned k) 

{ 

    int error; 

    MPI_File file; 

    MPI_Status status; 

    int chunkSize; 

    MPI_Offset fileSize, offset, remainder; 

    char *buffer; 

 

    // open MPI file for parallel I/O 

    error = MPI_File_open(MPI_COMM_WORLD, fileName, MPI_MODE_RDONLY, 

MPI_INFO_NULL, &file); 

    if (error != MPI_SUCCESS) 

    { 

  fprintf(stderr, "\n*** Unable to open input file '%s'\n\n", fileName); 

    } 

 

    // get the size of the file 

    error = MPI_File_get_size(file, &fileSize); 

    if (error != MPI_SUCCESS) 

    { 

  fprintf(stderr, "\n*** Unable to get size of file '%s'\n\n", 

fileName); 

    } 

 

    // find size of each process's chunk 

    chunkSize = fileSize / nProcs; 

    offset = chunkSize; offset *= id; // avoids overflow of the int 

    remainder = fileSize % nProcs; 

    if (remainder && id == nProcs - 1) 

    { 

  chunkSize += remainder; 

    } 

    if (id < nProcs -1) { // adds room on end to account for k-mers in part 

of each I/O section 

  chunkSize += k + 1; 

    } 

 

    if(chunkSize < 0) { 



  fprintf(stderr, "Process %3d: chunkSize < 0\n", id); 

  return 1; 

    } 

 

    buffer = (char *)calloc(chunkSize + 1, sizeof(char)); 

    if (buffer == NULL) 

    { 

  fprintf(stderr, "\n*** Unable to allocate memory to read \n\n"); 

  return 1; 

    } 

    if(debug) std::cout << "Process " << id << ": file = " << file << ", 

offset = " << offset << ", chunkSize = " << chunkSize << std::endl; 

    error = MPI_File_read_at(file, offset, buffer, chunkSize, MPI_CHAR, 

&status); 

    if (error != MPI_SUCCESS) { 

  fprintf(stderr, "\n*** Unable to read from input file\n\n"); 

  char error_string[BUFSIZ]; 

 int length_of_error_string; 

 MPI_Error_string(error, error_string, 

&length_of_error_string); 

 fprintf(stderr, "%3d: %s\n", id, error_string); 

    } else { 

    } 

 

    MPI_File_close(&file); 

 

    *n = chunkSize; 

    *a = buffer; 

    return 0; 

} 

 

/* complemenntbase() and reversecomplement() come from BELLA code 

 */ 

char 

complementbase(char n) { 

    switch(n) 

    { 

    case 'A': 

  return 'T'; 

    case 'T': 

  return 'A'; 

    case 'G': 

  return 'C'; 



    case 'C': 

  return 'G'; 

    } 

    assert(false); 

    return ' '; 

} 

 

std::string 

reversecomplement(const std::string& seq) { 

 

    std::string cpyseq = seq; 

    std::reverse(cpyseq.begin(), cpyseq.end()); 

 

    std::transform( 

  std::begin(cpyseq), 

  std::end  (cpyseq), 

  std::begin(cpyseq), 

    complementbase); 

 

    return cpyseq; 

} 

 

// modified from 32 bit version at from 

https://github.com/Ensembl/treebest/blob/master/common/hash_com.h 

inline uint64_t kmer_int(const char *s) { 

    uint64_t h = 0; 

    for ( ; *s; s++) 

  h = (h << 5) - h + *s; 

    return h; 

} 

 

 

/* sketchKmers adds the kmers in the data read to a Minhash sketch 

 * Receive: a, a pointer to the head of an array; 

 *  numValues, the number of chars in the array; 

 *  k, the number of bases in a k-mer; 

 *  kmerSketch, the empty sketch to fill with k-mers; 

 * Postcondition: kmerSketch is filled with k-mers from a. 

 */ 

void sketchKmers(char* a, int numValues, unsigned k, RangeMinHash<uint64_t> & 

kmerSketch, int id) { 

    std::string kmer = ""; 

    for(int i = 0; i < numValues; ++i) { 



  if(a[i] == 'A' || a[i] == 'T' || a[i] == 'C' || a[i]== 'G') { 

  if(kmer.length() < k) { 

  kmer.push_back(a[i]); 

  } 

  if(kmer.length() == k) { 

  // TODO: check against threshold for the hash values (will 

need to send the hash value to the sketch for confirmation) 

  std::string twin = reversecomplement(kmer); 

  if (twin < kmer) { 

  kmerSketch.addh(kmer_int(twin.c_str())); 

  } else { 

  kmerSketch.addh(kmer_int(kmer.c_str())); 

  } 

  kmer = kmer.substr(1, k-1) + a[i]; // start at 1 and get 

k-1 chars 

  } 

  } else { 

  kmer = ""; 

  } 

    } 

} 

 

/* combineSketches adds the kmers in the data read to a Minhash sketch 

 * Receive: localSketch, the local sketch for easy MPI process; 

 *  globalSketch, the global sketch for process 0 to gather 

the hash values; 

 *  nProcs, the number of MPI processes; 

 *  id, the id of the current MPI process; 

 * Postcondition: globalSketch for process 0 has the minimum values from the 

local sketches. 

 */ 

void combineSketches(RangeMinHash<uint64_t> & localSketch, 

RangeMinHash<uint64_t> & globalSketch, int nProcs, int id) { 

 

    if(nProcs == 1) { 

  // TODO: decide if this simplification should stay 

  globalSketch += localSketch; 

  return; 

    } 

 

    unsigned num_vals = localSketch.sketch_size(); 

    vector<uint64_t> local_data = localSketch.mh2vec(); 

    uint64_t * global_data = NULL; 



    int error_code; 

 

    if(id == 0) { 

  global_data = (uint64_t *)calloc(num_vals*nProcs, sizeof(uint64_t)); 

  if(global_data == NULL) { 

  std::cout << "Unable to allocate array for global data, so 

cannot gather" << std::endl; 

  return; 

  } 

    } 

 

    if(debug) { 

  std::cout << "Process " << id << ": " << localSketch.size() << 

std::endl; 

  std::cout << "Process " << id << ": size = " << localSketch.size() << 

" and capacity = " << localSketch.sketch_size() << std::endl; 

    } 

 

    error_code = MPI_Gather(local_data.data(), num_vals, 

MPI_UNSIGNED_LONG_LONG, global_data, num_vals, MPI_UNSIGNED_LONG_LONG, 0, 

MPI_COMM_WORLD); 

 

    if(error_code != MPI_SUCCESS) { 

  char error_string[BUFSIZ]; 

  int length_of_error_string; 

  MPI_Error_string(error_code, error_string, &length_of_error_string); 

  fprintf(stderr, "%3d: %s\n", id, error_string); 

    } 

 

    if(id == 0) { 

  for (unsigned i = 0; i < num_vals*nProcs; i++) { 

  globalSketch.add(global_data[i]); 

  } 

    } 

 

    free(global_data); 

} 

 

void sketchReduction(RangeMinHash<uint64_t> & localSketch, 

RangeMinHash<uint64_t> & globalSketch, int id, int nProcs) { 

    // NOTE: this code has bugs, so should not be used. However, it is left 

in because if debugged, it might be useful in the future 

    int n; 



    int n_vals = localSketch.sketch_size(); 

    vector<uint64_t> local_data = localSketch.mh2vec(); 

    uint64_t * buffer = NULL; // (uint64_t *)calloc(n_vals, 

sizeof(uint64_t)); 

    if (id%2 == 0) { 

  buffer = (uint64_t *)calloc(n_vals, sizeof(uint64_t)); 

  if(buffer == NULL) { std::cout << "Process " << id << " unable to 

receive sketches." << std::endl; return; } 

    } 

    for(n = 1; n < nProcs; n *= 2) { 

  if(id%(n*2) == 0) { 

  if(id+n < nProcs) { 

  // receive from id+n 

  MPI_Recv(buffer, n_vals, MPI_UNSIGNED_LONG_LONG, id+n, n, 

MPI_COMM_WORLD,MPI_STATUS_IGNORE); 

  for(int i = 0; i < n_vals; ++i) { 

  localSketch.add(buffer[i]); 

  } 

  std::cout << "receiving to " << id << " from " << id+n << 

" with n = " << n << " and first element = " << buffer[0] << std::endl; 

  } 

  } else if(id%(n*2) == n) { 

  // send to id-n 

  MPI_Send(local_data.data(), local_data.size(), 

MPI_UNSIGNED_LONG_LONG, id-n, n, MPI_COMM_WORLD); 

  std::cout << "sending from " << id << " to " << id-n << " with n 

= " << n << std::endl; 

  } 

  // // TODO: id receives, id+n sends data 

  // if( id%(n*2) == 0 && id+n < nProcs) { 

  //     // TODO: receive data from id + n 

  //     if(debug) std::cout << "receiving to " << id << " from " << 

id+n << std::endl; 

  //     MPI_Recv(buffer, n_vals, MPI_UNSIGNED_LONG_LONG, id+n, 0, 

MPI_COMM_WORLD,MPI_STATUS_IGNORE); 

  //     for(int i = 0; i < n_vals; ++i) { 

  //  localSketch.add(buffer[i]); 

  //     } 

  // } else if((id-n)%(n*2) == 0) { 

  //     // TODO: send data to id - n 

  //     if(debug) std::cout << "sending from " << id << " to " << id-n 

<< std::endl; 



  //     MPI_Send(local_data.data(), local_data.size(), 

MPI_UNSIGNED_LONG_LONG, id-n, 0, MPI_COMM_WORLD); 

  // } 

    } 

    free(buffer); 

 

    if(id == 0) { 

  globalSketch += localSketch; 

    } 

} 

 

calcThreshold.cpp 
/* calcThreshold.cpp calculates the MinHash predicted threshold for Cal-DisKS 

* Elizabeth Koning, Spring 2020 

* for Senior Project at Calvin University. 

*/ 

#include <sys/stat.h> 

#include <math.h> 

#include "mh.h" 

#include "include/sketch/BigInt/BigInt.h" 

#include <iostream> 

 

const int BASES = 4; 

const int SKETCH_SIZE = 150; 

const int LOCAL_SKETCH_SIZE = 150; 

 

double expected_unique_dbl(double k, double n) { 

// kmers is the number of picks, which is the number of kmers in the 

files 

// n is the number of unique kmers that could be chosen 

 

// return n - pow(n-1, k)*pow(n, 1-k); 

return n - n*pow(n-1, k)/pow(n, k); 

// return n * (1 - pow((n-1)/n, kmers)); 

 

double result = 1; 

for(double i = 0; i < k-1; i += 1) { 

 result = 1 + (1 - 1/n)*result; 

} 

return result; 

} 



 

// based on answer here: 

https://math.stackexchange.com/questions/72223/finding-expected-number-of-dis

tinct-values-selected-from-a-set-of-integers 

BigInt expected_unique(const BigInt& kmers, const BigInt& n) { 

// kmers is the number of picks, which is the number of kmers in the 

files 

// n is the number of unique kmers that could be chosen 

return n - n*power(n-1, kmers)/power(n, kmers); // tested 

} 

 

BigInt find_threshold(std::string file, int k, int sketch_size) { 

// size of file 

struct stat sb; 

if(stat(file.c_str(), &sb) == -1) { 

 perror("stat"); 

 exit(EXIT_FAILURE); 

} 

long long size = sb.st_size; // size is in bytes, which is equal to 

chars 

long long bases = size / 2; 

std::fprintf(stderr, "Size of %s is %lld bytes, or about %lld bases\n", 

file.c_str(), size, bases); 

 

// number of k-mers in the file. this is assuming that the characters 

used 

// for the names of the reads cancels out for the k-mers lost at the 

// ends of the reads. Future work could improve this calculation. 

long long kmers = bases - k + 1; 

 

// n is the number of possible k-mers with k bases 

BigInt n = BigInt(pow(BASES, k)); 

 

// number of unique k-mers expected in the file 

BigInt unique_kmers = expected_unique(kmers, n); 

 

// TODO: make expected_unique more efficent for practical reasons 

 

// NOTE: this assumes that max = 2^64 and min = 0, 

// which is the case for WangHash used in sketch. 

if (sketch_size > unique_kmers) { 

 std::cout << "NOTICE: the size of the sketch is greater than the number 

of expected unique kmers." << std::endl; 



} 

BigInt threshold = sketch_size / unique_kmers * pow(2, 64) + 1 ;// 

(std::numeric_limits<uint64_t>::max) - (std::numeric_limits<uint64_t>::min) + 

1; 

 

return threshold; 

} 

 

 

cori_job.sh 
#!/bin/bash 

#SBATCH -N 8 

#SBATCH --tasks-per-node=32 

#SBATCH -C haswell 

#SBATCH -q debug 

#SBATCH -J caldisks 

#SBATCH -o final/caldisks.%j.stdout 

#SBATCH -e final/caldisks.%j.error 

#SBATCH -t 7:00 

#DW jobdw capacity=10GB access_mode=striped type=scratch 

#DW stage_in 

source=/global/cscratch1/sd/erk24/data/real-data/celegans40x_allfastq.fastq 

destination=$DW_JOB_STRIPED/celegans40x_allfastq.fastq type=file 

#DW stage_in 

source=/global/cscratch1/sd/erk24/data/real-data/ecfull100x.fastq 

destination=$DW_JOB_STRIPED/ecfull100x.fastq type=file 

 

# NOTE: the files must be located in the scratch buffer to work with Cori's 

burst buffer. This enables parallel I/O 

# More info about the Burst buffer and scratch buffer here: 

https://www.nersc.gov/assets/Uploads/Burst-Buffer-tutorial.pdf 

# The capacity requested should coordinate with the size of the files 

 

echo "nodes =" $SLURM_JOB_NUM_NODES 

echo "tasks/node =" $SLURM_NTASKS_PER_NODE 

echo "Using k = 13 and sketch size = 150" 

echo 

 

TASKS=$(($SLURM_JOB_NUM_NODES*$SLURM_NTASKS_PER_NODE)) 

 

FILE_A=${DW_JOB_STRIPED}celegans40x_allfastq.fastq 



FILE_B=${DW_JOB_STRIPED}ecfull100x.fastq 

 

module swap PrgEnv-intel PrgEnv-gnu 

module load openmpi 

# rm caldiskstest # caldiskstest does not rebuild properly if not deleted. 

This should be uncommented during development 

cd include/sketch/BigInt/ 

make 

cd ../../../ 

./run_tests.sh 

 

mpirun -np $TASKS caldiskstest 13 150 $FILE_A $FILE_B 

mpirun -np $TASKS caldiskstest 13 150 $FILE_A $FILE_B 

mpirun -np $TASKS caldiskstest 13 150 $FILE_A $FILE_B 

 


